
Jobstats: A Slurm-Compatible Job Monitoring Platform for CPU
and GPU Clusters

Josko Plazonic
plazonic@princeton.edu

OIT Research Computing, Princeton
University

Princeton, New Jersey, USA

Jonathan D. Halverson
halverson@princeton.edu

Princeton Institute for Computational
Science and Engineering, Princeton

University
Princeton, New Jersey, USA

Troy J. Comi
tcomi@princeton.edu

OIT Research Computing &
Department of Chemical and

Biological Engineering, Princeton
University

Princeton, New Jersey, USA

ABSTRACT
Job monitoring on high-performance computing clusters is impor-
tant for evaluating hardware performance, troubleshooting failed
jobs, identifying inefficient jobs and more. The combination of the
Prometheus monitoring framework and the Grafana visualization
toolkit has proven successful in recent years. This work shows how
four Prometheus exporters can be configured for a Slurm cluster to
provide detailed job-level information on CPU/GPU efficiencies and
CPU/GPU memory usage as well as node-level Network File Sys-
tem (NFS) statistics and cluster-level General Parallel File System
(GPFS) activity. A novel approach was devised to efficiently store
a summary of this data in the Slurm database for each completed
job. The open-source job monitoring platform introduced here can
be used for batch, interactive and Open OnDemand jobs. Several
tools are presented that use the Prometheus and Slurm databases
to create dashboards, utilization reports and alerts.

CCS CONCEPTS
• Information systems→ Computing platforms.

KEYWORDS
Job Monitoring, Slurm, Prometheus, Grafana, GPUs, Alerts

ACM Reference Format:
Josko Plazonic, Jonathan D. Halverson, and Troy J. Comi. 2023. Jobstats:
A Slurm-Compatible Job Monitoring Platform for CPU and GPU Clusters.
In Practice and Experience in Advanced Research Computing (PEARC ’23),
July 23–27, 2023, Portland, OR, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3569951.3604396

1 INTRODUCTION
On a high-performance computing (HPC) cluster, users submit
jobs to the workload manager which arranges for the work to
be carried out on the compute nodes. The job scheduler typically
provides only limited tools for monitoring various aspects of the
running jobs. Due to the high cost of such clusters and the demand
by users for high throughput, it is important to ensure that the

This work is licensed under a Creative Commons Attribution International
4.0 License.

PEARC ’23, July 23–27, 2023, Portland, OR, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9985-2/23/07.
https://doi.org/10.1145/3569951.3604396

resources are being used properly. Additionally, the complexity of
HPC clusters leads to difficult-to-diagnose problems such as file
system slowdowns, CPUs being throttled and failed jobs.

To address these matters, various job monitoring platforms have
been introduced includingGanglia [9], XDMoD [12], TACC Stats [4],
MAP [10, 11], LIKWID [22] and PIKA [2]. Some users of these plat-
forms seek improvements such as greater support for GPU jobs,
enhanced visualization tools, and better facilities for working with
real-time job metrics. The combination of the Prometheus monitor-
ing framework [23] and the Grafana visualization toolkit [24] over-
come many of the shortcomings of previous job monitoring plat-
forms. For example, Kunz et al. [8] used Prometheus and Grafana to
detect a variety of anomalous jobs through simulation. The authors
were able to automatically detect several types of errant jobs.

In the present work, we introduce the Jobstats job monitoring
platform. The platform is based on Prometheus, Grafana and the
Slurm job scheduler [7]. Jobstats has proven to be of great value
at our institution which has a data center with 100,000 CPU-cores
and 500 GPUs. We discuss Prometheus and how it interacts with
the various components of the Jobstats platform in Section 2. Tools
that build on the platform are described in Section 3.

2 DESIGN OF THE JOBSTATS PLATFORM
2.1 Overview
The Jobstats platform is built on the Prometheus monitoring frame-
work [23] which provides a fast and efficient time-series database.
Such a database is a requirement for large clusters where the num-
ber of collected data points can be exorbitant. Job and node statistics
are exposed by four different Prometheus exporters or programs
that collect local statistics on a node and make them available for
the Prometheus server to collect. On the compute nodes, there are
up to three exporters: a standard node exporter for monitoring
generic statistics (e.g., CPU frequencies, NFS and local disk I/O sta-
tistics), CPU utilization and CPU memory usage data of individual
jobs via a cgroup exporter and, optionally, GPU job statistics via a
modified NVIDIA GPU exporter. An optional fourth exporter tracks
Spectrum Scale/GPFS filesystem use, only one instance per cluster,
usually on a central GPFS server and not on any of the compute
nodes (as a single instance exposes data for all members of the
GPFS cluster).

A central Prometheus server collects data from all of these ex-
porters every𝑁 seconds and stores it in its database with a retention
period of several months. We find that a choice of 𝑁 = 30 seconds

https://doi.org/10.1145/3569951.3604396
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3569951.3604396

PEARC ’23, July 23–27, 2023, Portland, OR, USA Plazonic, Halverson and Comi

gpudash jobstats reportseff utilization reportsjob defense shield

Prometheus DB Slurm DBGrafana

Jobstats Platform

GPFS
server

GPFS exporter

Node exporter

GPU GPU

cgroups exporter
CPU utilization
CPU memory

NVIDIA exporter
GPU utilization
GPU memory

Figure 1: A schematic diagram of the components of the Job-
stats platform and the external tools. A compute node with
two sockets is shown in the upper left. The dotted line around
the node indicates the three node-level exporters, namely,
Node, cgroups and NVIDIA. A GPFS server is shown in the up-
per right with its cluster-level GPFS exporter. The exporters
serve to make data availalble to the Prometheus database.
Users interact with the Prometheus data via Grafana and the
external tools (e.g., gpudash, jobstats).

yields sufficient data while only introducing a very small perfor-
mance overhead penalty. Kunz et al. [8] used a value of 5 seconds.
For a quick overview of job statistics and for long-term retention, a
summary of individual job statistics is generated at job completion
and stored in the Slurm database in the AdminComment field. This
is done by a slurmctld epilog script that runs at job completion,
combined with a clean-up script that checks every 5 minutes if
there are jobs that did not get the summary and then generates it.
The format of the AdminComment data is described below.

The jobstats command is used by users to display job efficiency
summaries. For completed jobs this is done by retrieving data from
the AdminComment field, while for actively running jobs it is done
by querying the Prometheus database directly. The output includes
per-node and overall CPU utilization and CPU memory usage as
well as the analogous quantities for GPU jobs.

Detailed plots showing the time history of various quantities are
available on the Grafana server(s), usually via an Open OnDemand
helper script that creates URLs with the appropriate jobids, start
times and end times.

Below is an outline of the steps that need to be taken to setup
the Jobstats platform for a Slurm cluster:

(1) Switch to cgroup based job accounting from Linux process
accounting

(2) Setup the exporters: cgroup, node, GPU (on the nodes) and,
optionally, GPFS (centrally)

(3) Setup the prolog.d and epilog.d scripts on the GPU nodes
(4) Setup the Prometheus server and configure it to scrape data

from the compute nodes and all configured exporters
(5) Setup the slurmctldepilog.sh script for long-term job

summary retention
(6) Lastly, configure Grafana and Open OnDemand.

Each of the steps above are discussed in detail below. For addi-
tional instructions, URLs and scripts, see the Jobstats GitHub repos-
itory [17].

2.2 CPU Utilization and CPU Memory
Slurm has to be configured to track job accounting data via the
cgroup plugin. This requires the following line in slurm.conf:

JobAcctGatherType=jobacct_gather/cgroup

The above is in addition to the other usual cgroup related plug-
ins/settings:

ProctrackType=proctrack/cgroup
TaskPlugin=affinity,cgroup

Slurm will then create two top-level cgroup directories for each job,
one for CPU utilization and one for CPU memory [17]. Within each
directory there will be subdirectories: step_extern, step_batch,
step_0, step_1, and so on. Within these directories one finds
task_0, task_1, and so on. These cgroups are scraped by a cgroup
exporter [14]. Table 1 lists all of the collected fields.

The cgroup exporter used here is based on Ref. [3] with ad-
ditional parsing of the jobid, steps, tasks and UID number. This
produces an output that resembles (e.g., for system seconds):

cgroup_cpu_system_seconds{jobid="247463",
step="batch",task="0"}

160.92

Note that the UID of the owning user is stored as a gauge in
cgroup_uid:

cgroup_uid{jobid="247463"}
334987

This is because accounting is job-oriented and having a UID of the
user as a label would needlessly increase the cardinality of the data
in Prometheus. All other fields are alike with jobid, step and task
labels.

The totals for a job have an empty step and task, for example:
cgroup_cpu_user_seconds{jobid="247463",

step="",task=""}
202435.71

This is due to the organization of the cgroup hierarchy. Consider
the directory:

/sys/fs/cgroup/cpu,cpuacct/slurm/uid_334987

Within this directory, one finds the following subdirectories:
job_247463/cpuacct.usage_user
job_247463/step_extern/cpuacct.usage_user
job_247463/step_extern/task_0/cpuacct.usage_user

This is the data most often retrieved and parsed for overall job effi-
ciency which is why by default the cgroup_exporter does not parse
step or task data. To collect all of it, add the --collect.fullslurm
option. We run the cgroup_exporter with these options:

/usr/sbin/cgroup_exporter --config.paths /slurm \
--collect.fullslurm

The --config.paths /slurm has to match the path used by Slurm
under the top cgroup directory. This is usually a path that is some-
thing like /sys/fs/cgroup/memory/slurm.

Jobstats: A Platform for Job Monitoring PEARC ’23, July 23–27, 2023, Portland, OR, USA

Table 1: cgroup metrics made available by the cgroups exporter.

Name Description Type

cgroup_cpu_system_seconds Cumulative CPU system seconds for jobid gauge
cgroup_cpu_total_seconds Cumulative CPU total seconds for jobid gauge
cgroup_cpu_user_seconds Cumulative CPU user seconds for jobid gauge

cgroup_cpus Number of CPUs in the jobid gauge
cgroup_memory_cache_bytes Memory cache used in bytes gauge
cgroup_memory_fail_count Memory fail count gauge
cgroup_memory_rss_bytes Memory RSS used in bytes gauge

cgroup_memory_total_bytes Memory total given to jobid in bytes gauge
cgroup_memory_used_bytes Memory used in bytes gauge
cgroup_memsw_fail_count Swap fail count gauge
cgroup_memsw_total_bytes Swap total given to jobid in bytes gauge
cgroup_memsw_used_bytes Swap used in bytes gauge

cgroup_uid UID number of user running this job gauge

2.3 GPU Job Statistics
GPU metrics (currently only NVIDIA) are collected by our ex-
porter [19] which was based on Ref. [1]. The main local changes
were to add the handling of Multi-Instance GPUs (MIG) and two
additional gauge metrics: nvidia_gpu_jobId and nvidia_gpu_jobUid.
Table 2 lists all of the collected GPU fields. Note that the approach
described here is not appropriate for clusters that allow for GPU
sharing (e.g., sharding). In Section 3, we demonstrate how the GPU
metrics stored in the Prometheus database can be queried by tools
that generate dashboards and utilization reports.

2.4 Node Specific Statistics
A standard node_exporter runs on every node. This allows us to
obtain other basic node metrics such as total memory available,
memory in use, CPU frequencies, NFS statistics, Infiniband statistics
andmany other potentially useful data points. Spectrum Scale/GPFS
statistics are collected with a custom Python based exporter [16].

2.5 Generating Job Summaries
Job summaries, as described above, are generated and stored in the
Slurm database at the end of each job by using a slurmctld epilog
script. For example, in slurm.conf:

EpilogSlurmctld=/usr/local/sbin/slurmctldepilog.sh

The script is available in the Jobstats GitHub repository [15].
For storage efficiency and convenience, the JSON job summary

data is gzipped and base64 encoded before being stored in the
AdminComment field of the Slurm database. The impact on the data-
base size due to this depends on job sizes. On our clusters, for small
jobs the AdminComment field tends to average under 50 characters
per entry with a maximum under 1500 while for large jobs the
maximum length is around 5000.

2.6 Grafana
The four exporters lead to a wealth of data in the Prometheus data-
base. To visualize this data, the Grafana visualization toolkit [24] is
used. The following job-level metrics are available in both Grafana
and the jobstats command:

• CPU Utilization
• CPU Memory Utilization
• GPU Utilization
• GPU Memory Utilization

The following additional job-level metrics are exposed only in
Grafana:

• GPU Temperature
• GPU Power Usage

Finally, the following additional node-level metrics are exposed only
in Grafana:

• CPU Percentage Utilization
• Total Memory Utilization
• Average CPU Frequency Over All CPUs
• NFS Statistics
• Local Disc R/W
• GPFS Bandwidth Statistics
• Local Disc IOPS
• GPFS Operations per Second Statistics
• Infiniband Throughput
• Infiniband Packet Rate
• Infiniband Errors

Eleven of the seventeen metrics above are node-level. This means
that if multiple jobs are running on the node then it will not be
possible to disentangle the data. To use thesemetrics to troubleshoot
jobs, the job should allocate the entire node.

The complete Grafana interface for the Jobstats platform is com-
posed of plots of the time history of the seventeen quantities above.
An example of the Grafana dashboard and the needed code are
available in the Jobstats GitHub repository [17]. This graphical
interface is used for detailed investigations such as troubleshooting
failed jobs, identifying jobs with CPU memory leaks, intermittent
GPU usage, load imbalance, and for understanding the anomalous
behavior of system hardware.

While the Grafana interface is an essential component of the Job-
stats platform, for quick inspections of job behavior, the jobstats
command is used. This tool and four others are discussed in Sec-
tion 3.

PEARC ’23, July 23–27, 2023, Portland, OR, USA Plazonic, Halverson and Comi

Table 2: GPU metrics made available by the NVIDIA exporter.

Name Description Type

nvidia_gpu_duty_cycle GPU utilization gauge
nvidia_gpu_memory_total_bytes Total memory of the GPU device in bytes gauge
nvidia_gpu_memory_used_bytes Memory used by the GPU device in bytes gauge

nvidia_gpu_num_devices Number of GPU devices gauge
nvidia_gpu_power_usage_milliwatts Power usage of the GPU device in milliwatts gauge

nvidia_gpu_temperature_celsius Temperature of the GPU device in Celsius gauge
nvidia_gpu_jobId JobId number of a job currently using this GPU as reported by Slurm gauge

nvidia_gpu_jobUid UID number of user running jobs on this GPU gauge

3 TOOLS OF THE JOBSTATS PLATFORM
The Prometheus and Slurm databases provide a rich dataset that
can be harnessed by special-purpose tools:

• jobstats: A command for generating a detailed Slurm effi-
ciency report for a given job.

• job defense shield: A tool for sending automated email
alerts to users with underperforming jobs.

• gpudash: A command that generates a dashboard showing
the utilization of each GPU on the cluster.

• reportseff: A command for displaying a simple Slurm effi-
ciency report for several jobs at once.

• utilization reports: A tool for sending detailed usage
reports to users and group leaders by email.

More details about each of these tools are provided below.

3.1 jobstats
The jobstats command provides users with a Slurm job efficiency
report. For completed jobs, the data is taken from a call to sacct
with several fields including AdminComment. For running jobs, the
Prometheus database must be queried using the following:

max_over_time(cgroup_memory_total_bytes{...}[...])
max_over_time(cgroup_memory_rss_bytes{...}[...])
max_over_time(cgroup_cpu_total_seconds{...}[...])
max_over_time(cgroup_cpus{...}[...])

See the GitHub repository [17] for the additional queries needed
for actively running GPU jobs.

The jobstats command requires a jobid:
$ jobstats 247463

An example of the jobstats output is available at https://github.
com/PrincetonUniversity/jobstats. The first part of the output dis-
plays job metadata such as the username, account, partition, cluster,
number of CPU-cores, start time and so on. The second part uses a
text-based meter to indicate the overall CPU/GPU utilization and
CPU/GPU memory usage. Detailed information is provided in the
third part of the output which includes per-node, per-CPU and
per-GPU values for the utilization and memory usage. The final
panel includes useful notes for the user based on the job metadata
and the CPU/GPU efficiencies and memory used. Such notes have
proven useful elsewhere [6]. Below is an example note from a job
that used 6 CPU-cores and over-allocated CPU memory:

* This job only used 15% of the 100GB of total
allocated CPU memory. Please consider allocating less

memory by using the Slurm directive --mem-per-cpu=3G or
--mem=18G. This will reduce your queue times and make
the resources available to other users. For more info:
https://researchcomputing.princeton.edu/memory

For our institution, there are currently more than twenty possible
notes. They cover such issues as low CPU or GPU utilization, over-
allocating CPU memory, using excessive run time limits, allocating
more nodes than necessary (i.e., job fragmentation), running serial
codes with multiple CPU-cores, and running jobs in the test queue.
Color and bold font is used throughout the report to draw the user’s
attention to key pieces of information. If a job runs for less than
twice the sampling period of the Prometheus exporters (60 seconds)
then the seff command is used in place of jobstats.

Importantly, the jobstats command is also used for Slurm effi-
ciency reports that are sent by email after a job completes. This is
done by changing the MailProg setting in slurm.conf. For details,
see Appendix A.2.

The installation requirements for jobstats are Python 3.6+ and
version 2.20+ of the Python Requests package. Version 1.17+ of the
Python blessed package [21] is optional. If blessed is available
then it will be used for coloring and styling text. The Python code
and instructions are available in the GitHub repository [17].

3.2 Job Defense Shield
High-performance computing clusters often serve a large number
of users who posses a range of knowledge and skills. This leads to
individuals misusing the resources due to mistakes, misunderstand-
ings, expediency, and related issues. To combat jobs that waste or
misuse the resources, a battery of alerts can be configured. While
such alerts can be configured in Prometheus [23], the most flexible
and powerful solution is external software.

The job defense shield is a Python code for sending auto-
mated email alerts to users and for creating reports for system ad-
ministrators. As discussed above, summary statistics for each com-
pleted job are stored in a compressed format in the AdminComment
field in the Slurm database. The software described here works by
calling the Slurm sacct command while requesting several fields
including the AdminComment field. The sacct output is stored in a
pandas dataframe for processing.

The job denfense shield provides email alerts for the follow-
ing:

• actively running jobs where a CPU or GPU has zero utiliza-
tion for longer than a threshold time value

https://github.com/PrincetonUniversity/jobstats
https://github.com/PrincetonUniversity/jobstats

Jobstats: A Platform for Job Monitoring PEARC ’23, July 23–27, 2023, Portland, OR, USA

• users in the top 𝑁 by usage over some time window with
low CPU or GPU utilization

• jobs that could have been run on a less powerful GPU (e.g.,
an NVIDIA MIG GPU versus H100)

• jobs with excessive run time limits
• jobs that request too many nodes (e.g., 1 CPU-core per node
over 10 nodes)

• jobs that run a serial code while allocating more than 1 CPU-
core

• jobs that request much more than the default CPU memory
but do not use it.

The Python code is written using object-oriented programming
techniques which makes it easy to create new alerts.

The job denfense shield has a check mode that shows on
which days a given user received an alert of a given type. Users
that appear to be ignoring the email alerts can be contacted directly.
Emails to users are most effective when sent sparingly. For this
reason, there is a command-line parameter to specify the amount
of time that must pass before the user can receive another email of
the same nature.

The example below shows how the script is called to notify users
in the top 𝑁 by usage with low CPU or GPU efficiencies over the
last week:

$./job_defense_shield.py --low-xpu-efficiencies \
--days=7 --email

The default thresholds are 60% and 15% for CPU and GPU utilization,
respectively, and 𝑁 = 15.

The installation requirements for the job defense shield are
Python 3.6+ and version 1.2+ of the Python pandas package [13].
The jobstats command is also required if one wants to examine
actively running jobs such as when looking for jobs with zero GPU
utilization. The Python code, example alerts and emails, and in-
structions are available at https://github.com/PrincetonUniversity/
job_defense_shield.

3.3 gpudash
The gpudash command generates a text-based dashboard of the
GPU utilization across a cluster in the form of a 2-dimensional
grid. Each cell displays the utilization from 0-100% along with the
username associated with each allocated GPU. Cells are colored
according to their utilization values making it easy to identify jobs
with low or high GPU utilization. The gpudash command can also
be used to check for available GPUs.

By default, the dashboard has seven columns and a number of
rows equal to the number of GPUs on the cluster. Each column
is evenly spaced in time by 𝑁 minutes. We find a good choice is
𝑁 = 10minutes which leads to data being shown over an hour. The
cron utility can be used to achieve this. The rows are labeled by
the node name and the GPU index while the columns are labeled
by time.

The gpudash command works by making the three queries to
the Prometheus server every 𝑁 minutes [5]. A Python script is used
to extract the information from the three generated JSON files and
append this data to the files read by gpudash. The UID for each
user is matched with its corresponding username. The jobid is not
required but it can be useful for troubleshooting.

Nodes that are down, or in a state which makes them unavailable,
are not shown in the visualization. Special labels can be added to
mark reserved nodes or special-purpose nodes. The installation
requirements for gpudash are Python 3.6+ and version 1.17+ of
the Python blessed package [21] which is used for creating col-
ored text and backgrounds. The Python code and instructions are
available at https://github.com/PrincetonUniversity/gpudash.

3.4 reportseff
The reportseff utility wraps sacct to provide a cleaner user expe-
rience when interrogating Slurm job efficiency values for multiple
jobs. In addition to multiple jobids, reportseff accepts Slurm out-
put files as arguments and parses the jobid from the filename. Some
sacct options are further wrapped or extended to simplify com-
mon operations. The output is a table with entries colored based
on high/low utilization values. The columns and formatting of the
table can be customized based on command line options.

A limit to the previous tools is that they provide information
on a single job at a time in great detail. Another common use case
is to summarize job efficiency for multiple jobs to gain a better
idea of the overall utilization. Summarized reporting is especially
useful with array jobs and workflow managers which interface
with Slurm. In these cases, running seff or jobstats becomes
burdensome. reportseff accepts jobs as jobids, Slurm output files,
and directories containing Slurm output files:

get information on jobs 123 and 124
$ reportseff 123 124
get information on jobs 123 to 133
$ reportseff {123..133}
check output files starting with jobname
$ reportseff jobname*
look for output files in the slurm_out directory
$ reportseff slurm_out/

The ability to link Slurm outputs with job status simplifies locating
problematic jobs and cleaning up their outputs.

The reportseff utility extends some of the sacct options. The
start and end time can accept any format accepted by sacct, as
well as a custom format, specified as a comma separated list of
key/value pairs. For example:

$ reportseff --since now-27hours # equivalent to
$ reportseff --since d=1,h=3 # 1 day, 3 hours

Filtering by job state is expanded with reportseff to specify states
to exclude. This filtering combined with accepting output files helps
in cleaning up failed output jobs:

$ reportseff \
--not-state CD \ # not completed
--since d=1 \ # today
--format=jobid \ # just get file name
my_failing_job* \ # only from these outputs
| xargs grep "output:"

The last piece of the pipeline above find lines with the output
directive to examine or delete. The format option can accept a
comma-separated list of column names or additional columns can
be appended to the default values. Appending prevents the need to
add in the same, default columns on every invocation.

https://github.com/PrincetonUniversity/job_defense_shield
https://github.com/PrincetonUniversity/job_defense_shield
https://github.com/PrincetonUniversity/gpudash

PEARC ’23, July 23–27, 2023, Portland, OR, USA Plazonic, Halverson and Comi

While the above features are available for any Slurm system,
when Jobstats information is present in the AdminComment, the
multi-node resource utilization is updated with the more accurate
Jobstats values and GPU utilization is also provided. This additional
information is controlled with the --node and --node-and-gpu
options.

A sample workflow with reportseff is to run a series of jobs,
each producing an output file. Run reportseff on the output direc-
tory to determine the utilization and state of each job. Jobs with low
utilization or failure can be examined more closely by copy/pasting
the Slurm output filename from the first column. Outputs from
failed jobs can be cleaned automatically with a version of the com-
mand piping above. Combining with watch and aliases can create
powerful monitoring for users:

monitor the current directory every 5 minutes
$ watch -cn 300 reportseff --modified-sort
monitor the user's efficiency every 10 minutes
$ watch -cn 600 reportseff --user $USER \

--modified-sort --format=+jobname

The installation requirements for reportseff are Python 3.7+
and version 6.7+ of the Python click package which is used for cre-
ating colored text and command line parsing. The Python code and
instructions are available at https://github.com/troycomi/reportseff.

3.5 Utilization Reports
Users can receive an email utilization report upon completion of
each job via Slurm directives. Because some users decide not to
receive these emails, it is important to periodically send a compre-
hensive utilization report to each user. As discussed above, summary
statistics for each completed job are stored in a compressed format
in the AdminComment field in the Slurm database. The software de-
scribed here works by calling sacct while requesting several fields
including AdminComment. The sacct output is stored in a pandas
dataframe for processing.

Each user that ran at least one Slurm job in the specified time
interval will receive a report when the software is run. The first
part of the report is a table that indicates the overall usage for each
cluster. Each row provides the CPU-hours, GPU-hours, number of
jobs, and Slurm account(s) and partition(s) that were used by the
user.

The second part of the report is a detailed table showing for each
partition of each cluster the CPU-hours, CPU-rank, CPU-eff, GPU-
hours, GPU-rank, GPU-eff and number of jobs. The CPU-rank or
GPU-rank indicates the user’s usage relative to the other users on
the given partition of the cluster. CPU-eff (or GPU-eff) is the overall
CPU (or GPU) efficiency which varies from 0-100%. A responsible
user will take action when seeing that their rank is high while their
efficiency is low. The email report also provides a definition for
each reported quantity. The software could be extended by adding
queue hours and data storage information to the tables.

The default mode of the software is to send user reports. It
can also be used to send reports to those that are responsible for
the users such as the principal investigator. This is the so-called
sponsors mode. The example below shows how the script is called
to generate user reports over the past month which are sent by
email:

$ python utilization_reports.py --report-type=users \
--months=1 --email

We find a good choice is to send the report once per month.
The installation requirements for the software are Python 3.6+
and version 1.2+ of the pandas package [13]. The Python code,
example reports, and instructions are available at https://github.
com/PrincetonUniversity/monthly_sponsor_reports.

4 SUMMARY
The Jobstats platform is built on Prometheus, Grafana and Slurm.
The speed and efficiency of the time-series database provided by
Prometheus is central to our design. The multiple exporters pro-
duce a rich dataset which is harnessed by external tools such as
jobstats. A standard server is sufficient to support Prometheus.
The Jobstats platform has proven successful at our institution which
has 100,000 CPU-cores and 500 GPUs using an exporter sampling
period of 30 seconds. While setting up the platform requires touch-
ing numerous files, the procedure for doing so is well-documented
and the benefits of using the Jobstats platform are numerous. The
platform is particularly relevant to institutions with GPU clusters.
The custom notes that appear at the bottom of the jobstats output
have proven to be very useful in guiding users. There are plans to
extend the platform to provide information on data storage.

Can the platform be configured for job schedulers other than
Slurm such as PBS? The most difficult piece to adjust is likely
to be the cgroups-based process accounting. The other exporters
should be easier to modify for other schedulers. Presumably there
is something analogous to using the AdminComment field for the
target scheduler.

Please direct all questions concerning this work to Princeton
Research Computing at cses@princeton.edu or post an issue on the
Jobstats GitHub repository [17].

ACKNOWLEDGMENTS
Discussions with William Wichser helped to shape the design of
the Jobstats platform. The authors are grateful to Galen Collier,
Kevin Abbey and Asya Dvorkin for reviewing this work. Carolina
Roe-Raymond and Kevin Abbey contributed to the custom notes
generated by the jobstats command.

REFERENCES
[1] Rohit Agarwal. 2018. NVIDIA GPU Prometheus Exporter. Retrieved March 3,

2023 from https://github.com/mindprince/nvidia_gpu_prometheus_exporter
[2] Robert Dietrich, Frank Winkler, Andreas Knüpfer, and Wolfgang Nagel. 2020.

PIKA: Center-Wide and Job-Aware Cluster Monitoring. In 2020 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, New York, NY, 424–432.
https://doi.org/10.1109/CLUSTER49012.2020.00061

[3] Trey Dock. 2022. cgroup Prometheus exporter. Retrieved March 3, 2023 from
https://github.com/treydock/cgroup_exporter

[4] Todd Evans, William L. Barth, James C. Browne, Robert L. DeLeon, Thomas R.
Furlani, Steven M. Gallo, Matthew D. Jones, and Abani K. Patra. 2014. Compre-
hensive Resource Use Monitoring for HPC Systems with TACC Stats. In 2014
First International Workshop on HPC User Support Tools (HUST). IEEE, New York,
NY, 13–21. https://doi.org/10.1109/HUST.2014.7

[5] Jonathan Halverson. 2023. gpudash. Retrieved June 15, 2023 from https:
//github.com/PrincetonUniversity/gpudash

[6] Petar Jager. 2023. goslmailer. Retrieved June 14, 2023 from https://github.com/
CLIP-HPC/goslmailer

[7] Morris A. Jette, Andy B. Yoo, and Mark Grondona. 2003. Slurm: Simple Linux
Utility for Resource Management. In Lecture Notes in Computer Science (Job
Scheduling Strategies for Parallel Processing, Vol. 2862). Springer-Verlag, Berlin,
Germany, 44–60.

https://github.com/troycomi/reportseff
https://github.com/PrincetonUniversity/monthly_sponsor_reports
https://github.com/PrincetonUniversity/monthly_sponsor_reports
mailto:cses@princeton.edu
https://github.com/mindprince/nvidia_gpu_prometheus_exporter
https://doi.org/10.1109/CLUSTER49012.2020.00061
https://github.com/treydock/cgroup_exporter
https://doi.org/10.1109/HUST.2014.7
https://github.com/PrincetonUniversity/gpudash
https://github.com/PrincetonUniversity/gpudash
https://github.com/CLIP-HPC/goslmailer
https://github.com/CLIP-HPC/goslmailer

Jobstats: A Platform for Job Monitoring PEARC ’23, July 23–27, 2023, Portland, OR, USA

[8] Pascal Kunz. 2022. HPC Job-Monitoring with Slurm, Prometheus and Grafana.
Bachelor Thesis. University of Basel, Spiegelgasse 1, 4051 Basel, Switzerland.

[9] Matthew L. Massie, Brent N. Chun, and David E. Culler. 2004. The Ganglia
DistributedMonitoring System: Design, Implementation, and Experience. Parallel
Comput. 30, 7 (2004), 817–840.

[10] Ashish Pal and Preeti Malakar. 2020. MAP: A Visual Analytics System for
Job Monitoring and Analysis. In 2020 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, New York, NY, 442–448. https://doi.org/10.1109/
CLUSTER49012.2020.00063

[11] Ashish Pal and Preeti Malakar. 2021. An Integrated Job Monitor, Analyzer and
Predictor. In 2021 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, New York, NY, 609–617. https://doi.org/10.1109/Cluster48925.2021.00091

[12] J. T. Palmer, S. M. Gallo, T. R. Furlani, M. D. Jones, R. L. DeLeon, J. P. White, N.
Simakov, A. K. Patra, J. Sperhac, T. Yearke, R. Rathsam, M. Innus, C. D. Cornelius,
J. C. Browne, W. L. Barth, and R. T. Evans. 2015. Open XDMoD: A Tool for
the Comprehensive Management of High Performance Computing Resources.
Computing in Science Engineering 17, 4 (2015), 52–62.

[13] The pandas development team. 2020. pandas-dev/pandas: Pandas. Zenodo. https:
//doi.org/10.5281/zenodo.3509134

[14] Josko Plazonic. 2023. cgroup Prometheus Exporter. Retrieved March 3, 2023
from https://github.com/plazonic/cgroup_exporter

[15] Josko Plazonic. 2023. Generating Job Summaries with slurmctldepilog.sh.
https://github.com/PrincetonUniversity/jobstats/blob/main/slurm.

[16] Josko Plazonic. 2023. GPFS Prometheus Exporter. Retrieved March 3, 2023 from
https://github.com/plazonic/gpfs-exporter

[17] Josko Plazonic. 2023. Jobstats Job Monitoring Platform. Retrieved March 3, 2023
from https://github.com/PrincetonUniversity/jobstats

[18] Josko Plazonic. 2023. Jobstats Mail. Retrieved March 3, 2023 from https:
//github.com/PrincetonUniversity/jobstats/blob/main/slurm/jobstats_mail.sh

[19] Josko Plazonic. 2023. NVIDIA GPU Prometheus Exporter. Retrieved March 3,
2023 from https://github.com/plazonic/nvidia_gpu_prometheus_exporter

[20] Josko Plazonic. 2023. Prolog and Epilog Scripts. Retrieved March 3, 2023 from
https://github.com/PrincetonUniversity/jobstats/tree/main/slurm

[21] Erik Rose, Jeff Quast, and Avram Lubkin. 2023. Python blessed Package. Retrieved
March 3, 2023 from https://blessed.readthedocs.io/en/latest/

[22] Thomas Röhl, Jan Eitzinger, Georg Hager, and Gerhard Wellein. 2017. LIKWID
Monitoring Stack: A Flexible Framework Enabling Job Specific Performance
Monitoring for the Masses. In 2017 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, New York, NY, 781–784. https://doi.org/10.1109/
CLUSTER.2017.115

[23] Julius Volz and Björn Rabenstein. 2023. Prometheus. Retrieved March 3, 2023
from https://prometheus.io/docs/introduction/overview/

[24] Torkel Ödegaard. 2023. Grafana. Retrieved March 3, 2023 from https://grafana.
com

A PROMETHEUS DETAILS
A.1 GPU Jobs
For efficiency and simplicity, JobId and jobUid are collected from
files in /run/gpustat/0 (for GPU 0), /run/gpustat/1 (for GPU
1), and so on. For example:

$ cat /run/gpustat/0
247609 223456

In the above, the first number is the jobid and the second is the
UID number for that job’s owning user. These are created with
Slurm prolog.d and epilog.d scripts that can be found in the Jobstats
GitHub repository [20].

A.2 Procedure for Modifying User Email
Reports

To generate email reports using jobstats after a job finishes, the
following line is needed in slurm.conf:

MailProg=/usr/local/bin/jobstats_mail.sh

Here are the key lines in the jobstats_mail.sh script:

SEFF=/usr/local/bin/jobstats --no-color
$SEFF $jobid | $MAIL -s "$subject" $recipient

One also needs to set the content-type to text/html so that the
email uses a fixed-width font. The full script is available in the
Jobstats GitHub repository [18].

Received 3 March 2023; revised X XXXXX 2023; accepted X XXXXX 2023

https://doi.org/10.1109/CLUSTER49012.2020.00063
https://doi.org/10.1109/CLUSTER49012.2020.00063
https://doi.org/10.1109/Cluster48925.2021.00091
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://github.com/plazonic/cgroup_exporter
https://github.com/plazonic/gpfs-exporter
https://github.com/PrincetonUniversity/jobstats
https://github.com/PrincetonUniversity/jobstats/blob/main/slurm/jobstats_mail.sh
https://github.com/PrincetonUniversity/jobstats/blob/main/slurm/jobstats_mail.sh
https://github.com/plazonic/nvidia_gpu_prometheus_exporter
https://github.com/PrincetonUniversity/jobstats/tree/main/slurm
https://blessed.readthedocs.io/en/latest/
https://doi.org/10.1109/CLUSTER.2017.115
https://doi.org/10.1109/CLUSTER.2017.115
https://prometheus.io/docs/introduction/overview/
https://grafana.com
https://grafana.com

	Abstract
	1 Introduction
	2 Design of the Jobstats Platform
	2.1 Overview
	2.2 CPU Utilization and CPU Memory
	2.3 GPU Job Statistics
	2.4 Node Specific Statistics
	2.5 Generating Job Summaries
	2.6 Grafana

	3 Tools of the Jobstats Platform
	3.1 jobstats
	3.2 Job Defense Shield
	3.3 gpudash
	3.4 reportseff
	3.5 Utilization Reports

	4 Summary
	Acknowledgments
	References
	A Prometheus Details
	A.1 GPU Jobs
	A.2 Procedure for Modifying User Email Reports

