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Why should you care about parallel 
programming?
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Moore's Law

Moore’s Law

Slide source: UCB CS 194 Fall’2010

• In 1965, Intel co-founder Gordon Moore predicted (from just 3 data 
points!) that semiconductor density would double every 18 months.
– He was right! Over the last 50 years, transistor densities have 

increased as he predicted.
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From Hennessy and Patterson, Computer Architecture: A 
Quantitative Approach, 4th edition, Sept. 15, 2006

Vax “Star”, CISC
Vax-11/780

Vax “Nautilus”, 
CISC, Vax 8700

Sparc V7 RISC
5-stage
Sun 4/260
16.7 MHz PowerPC 604, 100 

MHz
7 stage, 4 issue

Pentium 4, 3.6 GHz, 
31 stage, 6 uop 
issue, 3 CISC issue

Third party names are the property of their owners.

(SPECint) 
Uniproccessor 
Performance

Pentium 4, 3.0 GHz, 
20 stage, 3 CISC 
issue (6 uop issue)



The Hardware/Software contract

• Write your software as 
you choose and the 
HW-geniuses will take 
care of performance.
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• The result: Generations of performance ignorant software engineers using 
performance-handicapped languages (such as Python) … which was OK 
since performance was a HW job.

Third party names are the property of their owners.



Why the drop off in performance?
Dennard Scaling:  
• Transistors shrink, circuit delays go 

down, frequency goes up, power per 
transistor goes down.

• Result … if transistor density 
doubles, circuit is 40% faster for 
twice as many transistors for fixed 
power.

Dennard scaling considers 
“dynamic effects” driven by 
frequency.   It assumes static 
effects such as leakage are 
negligible.
• As transister densities climb, these 

static effects DO NOT scale and 
eventually dominate.
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• The problem isn’t the end of Moore’s law.  The problem is the end of Dennard 
scaling.  This means with new generations of process technology, chip frequency 
no longer improves.   The free lunch is over.

Third party names are the property of their owners.
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Modern design emphasizes Power consumption.
Power vs Performance (normalized to i486 process tech.) 
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Modern design emphasizes Power consumption.
Power vs Performance (normalized to i486 process tech.) 
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Consider power in a chip … 

Processor 

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

C = capacitance  … it measures the 
ability of a circuit to store energy:

C = q/V à q = CV

Work is pushing something (charge or q) 
across a “distance” … in electrostatic 
terms  pushing q from 0 to V:

V * q = W.     

But for a circuit    q = CV   so 

W = CV2

power is work over time … or how many 
times in a second we oscillate the circuit 

Power = W* F   à Power = CV2f



... Reduce power by adding cores

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W., 
"Optimizing power using transformations," IEEE Transactions on Computer-Aided 
Design of Integrated Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995 

Source:  
Vishwani Agrawal

Processor 

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

f * time

Processor 

f/2

Processor 

f/2

Input

Output

Capacitance = 2.2C
Voltage = 0.6V
Frequency = 0.5f
Power = 0.396CV2f

f * time



... Many core: we are all doing it

PCIe QPI

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache
(45MB)

Memory Controller

buffered switch

buffered switch

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache

HSW

Memory 
Controller

HSW

GPU

CPU



The result…
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+

=
A new HW/SW contract … HW people will do 
what’s natural for them (lots of cores) and 
optimization is up to SW people who will have to 
adapt (rewrite everything)



Core concepts in parallel programming
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Let’s agree on a few definitions: 

• Task:  
– A specific sequence of instructions plus a data environment.  A program is 

composed of one or more tasks.
• Active task: 
– A task that is available to be scheduled for execution.  When the task is moving 

through its sequence of instructions, we say it is making forward progress
• Fair scheduling:
– When a scheduler gives each active task an equal opportunity for execution. 
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• Computer:
– A machine that transforms 

input data into output data. 
– Typically a computer consists 

of Control, Arithmetic/Logic, 
and  Memory units.  

– The transformation is defined 
by a stored program (von 
Neumann architecture).



Concurrency vs. Parallelism
• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active and 

unordered.  If scheduled fairly, they can be described as logically making 
forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making 
forward progress at the same time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

Concurrent, parallel Execution

Concurrent, non-parallel Execution
PE0

PE0

PE1

PE1

PE2

PE3

Time
PE = Processing Element



Concurrency vs. Parallelism
• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active 

and unordered.  If scheduled fairly, they can be described as logically
making forward progress at one time.
– Parallelism: A condition of a system in which multiple tasks are actually

making forward progress at one time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

In most cases, parallel programs 
exploit concurrency in a problem to 
run tasks on multiple processing 
elements

We use Parallelism to:
• Do more work in less time
• Work with larger problems 

Programs

Concurrent 
Programs

Parallel 
Programs

If tasks execute in “lock step” they are not concurrent, 
but they are still parallel.  Example … a SIMD unit.
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Consider performance of parallel programs

Load Data Compute T1 Consume Results Compute TN
…

Timeseq(1) = Tload + N*Ttask + Tconsume

Compute N independent  tasks on one processor

Ideally Cut 
runtime by ~1/P 
(Note: Parallelism 
only speeds-up the 
concurrent part)

…

Timepar(P) = Tload + (N/P)*Ttask + Tconsume

Compute N independent  tasks with P processors

Load Data

Compute T1

Compute TN

Consume Results 



Talking about performance

§Speedup: the increased 
performance from running on P 
processors.  )(

)1(
)(

PTime
Time

PS
par

seq=

PPS =)(

PPS >)(

n Perfect Linear Speedup:
happens when no parallel 
overhead and algorithm is 
100% parallel.  

n Super-linear Speedup: typically 
due to cache effects … i.e. as P 
grows, aggregate cache size 
grows so more of the problem 
fits in cache 



So now you should understand my silly introduction slide.
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We measure our 
success as parallel 
programmers by how 
close we come to ideal 
linear speedup.

A good parallel 
programmer always 
figures out when you 
fall off the linear 
speedup curve and 
why that has 
occurred.



Amdahl’s Law
• What is the maximum speedup you can expect from a parallel program?
• Approximate the runtime as a part that can be sped up with additional 

processors and a part that is fundamentally serial. 

seqpar Time
P
fractionparallelfractionserialPTime *)__()( +=

• If you had an unlimited number of processors:

• If serial_fraction is a and parallel_fraction is (1- a) then the speedup is: 

S(P) =
Timeseq

Timepar (P)
=

Timeseq
(α +1−α

P
)*Timeseq

=
1

α +
1−α
P

¥®P

• The maximum possible speedup is:
a
1

=S Amdahl’s 
Law



Acknowledgement: , 2009 DAC Tutorial – Tom Spyrou
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Implications of Amdahl’s Law
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n Consider benefits of adding processors to your parallel program for different 
serial fractions.

n Note: getting a serial fraction under 10% is challenging for the typical 
application

Speedup

Serial 
Fraction



Weak Scaling: a response to Amdhal
• Gustafson's Observation: For many problems, as the size of 

the problem (N) grows, the serial fraction (a(N)) decreases.  
What does this imply for the speedup (S(P,N))?

§ In other words … if parallelizable computations asymptotically dominate the 
runtime, then solving a larger problem will increase your Amdahl-limited 
speedup.

§ Weak Scaling: Performance of an application when the problem size 
increases with the number of processors (fixed size problem per node)
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History of parallel computing systems
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Parallel computing:  It’s old

25
Late 70’s

Cray 1 (1976) Cray 2 (1985) Cray C-90 (1991)

Cosmic cube (1983) Paragon (1993)

ASCI Red (1997) 

Clusters (late 80’s)

Late 80’s Late 90’s

Vector Computers

SMP computers

Cluster Computers

Massively Parallel Processors (MPP)

Linux PC Clusters 
(~1995)

Third party names are the property of their owners.



The birth of Supercomputing

• The CRAY-1A:
– 2.5-nanosecond clock, 
– 64 vector registers,
– 1 million 64-bit words of high-

speed memory. 
– Peak speed:
– 80 MFLOPS scalar.
– 250 MFLOPS vector (but this 

was VERY hard to achieve)

• Cray software … by 1978 
– Cray Operating System (COS), 
– the first automatically vectorizing

Fortran compiler (CFT),
– Cray Assembler Language (CAL) 

were introduced. 

§ On July 11, 1977, the CRAY-1A, serial 
number 3, was delivered to NCAR. The 
system cost was $8.86 million ($7.9 
million plus $1 million for the disks). 

http://www.cisl.ucar.edu/computers/gallery/cray/cray1.jsp
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History of Supercomputing: 
The Era of the Vector Supercomputer
• Large mainframes that operated on vectors of data
• Custom built, highly specialized hardware and software
• Multiple processors in an shared memory configuration
• Required modest changes to software (vectorization)
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The attack of the killer micros

• The Caltech Cosmic 
Cube developed by 
Charles Seitz and 
Geoffrey Fox in1981

• 64 Intel 8086/8087 
processors

• 128kB of memory per 
processor

• 6-dimensional 
hypercube network

http://calteches.library.caltech.edu/3419/1/Cubism.pdf

The cosmic cube, Charles Seitz
Communications of the ACM, Vol 28, number 1 January 
1985, p. 22 

Launched the “attack of the killer 
micros” 
Eugene Brooks, SC’90

http://calteches.library.caltech.edu/3419/1/Cubism.pdf


Machine Model:  Distributed Memory

• The new microprocessor based parallel computers were all 
distributed memory machines.

• Each node has its own processors, memory and caches but 
cannot directly access another node’s memory.

• Each “node” has a Network Interface component (NIC) for 
all communication and synchronization.

• Fundamentally more scalable than shared memory 
machines … especially cache coherent shared memory.

interconnect

P0

memory

NIC

. . .

P1

memory

NIC Pn

memory

NIC
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It took a while, but MPPs came to 
dominate supercomputing

• Parallel computers with large numbers of microprocessors 
• High speed, low latency, scalable interconnection networks 
• Lots of custom hardware to support scalability
• Required massive changes to software (parallelization) 
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The MPP future looked bright … but then clusters 
took over
• A cluster is a collection of connected, independent computers that work in 

unison to solve a problem.
• Nothing is custom … motivated users could build cluster on their own

§ First clusters appeared in 
the late 80’s

§ The Intel Pentium Pro in 
1995 coupled with Linux 
made them competitive.
§ NASA Goddard’s Beowulf 

cluster demonstrated 
publically that high visibility 
science could be done on 
clusters.

§ Clusters made it easier to 
bring the benefits due to 
Moores’s law into working 
supercomputers



Top 500 list: System Architecture

*

Constellation: A cluster where the number of cores on a node is greater than the number of nodes … a term only used by top500.  
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Clusters rule but what about parallelism 
on each node of the cluster?
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Hardware Diversity: Basic Building Blocks

ICache
Scheduler

CPU Core:  one or more hardware threads sharing 
an address space. Optimized for low latencies.

SIMD: Single Instruction Multiple Data.
Vector registers/instructions with 128 to 512 bits so a 
single stream of instructions drives multiple data 
elements.

SIMT: Single Instruction Multiple Threads.
A single stream of instructions drives many threads. More 
threads than functional units.  Over subscription to hide 
latencies. Optimized for throughput.   



Hardware Diversity: Combining building 
blocks to construct nodes

LLC

LL
C

LLC

LLC

Multicore CPU

Heterogeneous: CPU+GPU
Heterogeneous: 

Integrated CPU+GPU

Heterogeneous: 
CPU + manycore coprocessor

Manycore CPU



Hardware diversity: CPUs
PCIe QPI

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache
(45MB)

Memory Controller

buffered switch

buffered switch

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache

HSW

Memory 
Controller

HSW

Intel® Xeon® processor: multicore
E7 v3 series (Haswell or HSW)
• 18 cores
• 36 Hardware threads
• 256 bit wide vector units 

In both cases … Cache hierarchy to 
create a low latency, coherent 
view of a shared address space.



Hardware diversity: GPUs
• Nvidia® GPUs are a collection of “Streaming Multiprocessors” (SM)

– Each SM is analogous to a core of a Multi-Core CPU
• Each SM is a collection of SIMD execution pipelines that share 

control logic, register file, and L1 Cache# 

#Source: UC Berkeley, CS194, 
Fall’2014, Kurt Keutzer and Tim Mattson

For example: an NVIDIA 
Tesla C2050 (Fermi) GPU 
with 3GB of memory and 
14 streaming 
multiprocessor cores*.

*Source: http://www.nersc.gov/users/computational-systems/dirac/node-and-gpu-configuration/

Third party names are the property of their owners.
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... Many core: we are all doing it

PCIe QPI

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache
(45MB)

Memory Controller

buffered switch

buffered switch

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache

HSW

Memory 
Controller

HSW

GPU
• Hundreds of Cores Driven by a 

single stream of instruction
• Each core has many (32, 64, …) 

SIMD lanes
• Optimized for throughput … 

oversubscription to hide memory 
latency

CPU
• A few to dozens of Cores with 

independent streams of 
instructions.

• Cores typically have complex logic 
(e.g. out of order) to make 
individual threads run fast.

• Optimized for latency … complex 
memory hierarchy to run fast out of 
cache



It’s really about competing software platforms

PCIe QPI

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache
(45MB)

Memory Controller

buffered switch

buffered switch

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache

HSW

Memory 
Controller

HSW

GPU
• Single Instruction multiple threads.

• turn loop bodies into kernels.
• HW intelligently schedules kernels 

to hide latencies.
• Dogma: a natural way to express huge 

amounts of data parallelism
• Examples: CUDA, OpenCL, OpenACC

CPU
• Shared Address space, multi-

threading.
• Many threads executing with 

coherent shared memory.
• Dogma: The legacy programming 

model people already knows.  Easier 
than alternatives.

• Examples: OpenMP, Pthreads, C++11
*third party names are the property of their owners



Back-up

• Memory Hierarchy
• Vector instructions
• Computer networks
• Design Patterns
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Shared Memory (DRAM)

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core1

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

𝛾

𝛾 𝛾

𝛾 𝛾

𝛾

A variable is a name for a location in memory (DRAM).

Temporary copies of that variable may exist across the memory 
hierarchy … and these temporary values may be different.



L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$D
D

R
D

D
R

D
D

R
D

D
RPC

Ie

PC
Ie

Q
PI

Q
PI

Q
PI

Q
PI

sw
itc

h

sw
itc

h

sw
itc

h

sw
itc

h

Socket 0 Socket 1

L2$

L1D$ L1I$

ALU

HT1HT0 A node in Cori … A CPU 
based supercomputer at 
NERSC based on two 
sockets of Xeon processors 
with 32 cores per socket

A NUMA node



Back-up

• Memory Hierarchy
• Vector instructions
• Computer networks
• Design Patterns
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Vector SIMD
• A functional unit typically associated with a CPU core takes a single 

stream of instructions that are applied in parallel to the elements of 
values in special vector registers.

• Vector instructions usually generated by the compiler “automatically” 
from loops (often with help from programmer inserted directives).

• Best performance may require explicit coding with vector intrinsics. 

+
X

Y

X + Y

+
x3 x2 x1 x0

y3 y2 y1 y0

x3+y3 x2+y2 x1+y1 x0+y0

X

Y

X + Y

Slide Source: Alex Klimovitski & Dean Macri,  Intel Corporation



Vector (SIMD) Programming

• Architects love vector units, 
since they permit space- and 
energy- efficient parallel 
implementations.

• However, standard SIMD 
instructions on CPUs are 
inflexible, and can be difficult to 
use.

• Options:
– Let the compiler do the job
– Assist the compiler with language 

level constructs for explicit 
vectoriztion.
– Use intrinsics … an assembly level 

approach.

4 way SIMD (SSE) 16 way SIMD 
(Xeon™ PHI)



Example Problem:  Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx » p
i = 0

N

Mathematically, we know that:

We can approximate the integral as a 
sum of rectangles:

Where each rectangle has width Dx and 
height F(xi) at the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2 )

4.0

2.0

1.0
X0.0
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Serial PI program

static long num_steps = 8388608;
float step;
int main ()
{ int i; float x, pi, sum = 0.0;

step = 1.0/(float) num_steps;

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

Normally, I’d use double types throughout to minimize roundoff errors 
especially on the accumulation into sum.  But to maximize impact of 
vectorization for these exercise, we’ll use float types.    

Compile as (O3 no-vec), 0.012 secs
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Explicit Vectorization PI program

static long num_steps = 8388608;
float step;
int main ()
{ int i; float x, pi, sum = 0.0;

step = 1.0/(float) num_steps;
#pragma omp simd reduction(+:sum)
for (i=0;i< num_steps; i++){

x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

Note that literals (such as 4.0, 1.0 and 0.5) are not explicitly declared 
with the desired type.  The C language treats these as “double” and that 
impacts  compiler optimizations.  We call this the default case.

Compile as (O3 no-vec), 0.012 secs
Compile as (O3),             0.012 secs

No vectorization
benefit .  Why?
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Explicit Vectorization PI program

static long num_steps = 8388608;
float step;
int main ()
{ int i; float x, pi, sum = 0.0;

step = 1.0f/(float) num_steps;
#pragma omp simd reduction(+:sum)
for (i=0;i< num_steps; i++){

x = (i+0.5f)*step;
sum = sum + 4.0f/(1.0f+x*x);

}
pi = step * sum;

}
Note that literals (such as 4.0, 1.0 and 0.5) are explicitly declared as type 
float (to match the types of the variables in this code.  This greatly 
enhances vectorization and compiler optimization.

Literals as double (O3 no-vec),  0.012 secs
Literals as Float (O3 no-vec),    0.0042 secs
Literals as Float (O3),                0.0024 secs
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Pi Program: Vectorization with intriniscs (SSE)
float pi_sse(int num_steps)
{  float scalar_one =1.0, scalar_zero = 0.0,  ival, scalar_four =4.0, step, pi, vsum[4];

step = 1.0/(float) num_steps;

__m128 ramp   = _mm_setr_ps(0.5, 1.5, 2.5, 3.5);
__m128 one     = _mm_load1_ps(&scalar_one);
__m128 four    = _mm_load1_ps(&scalar_four);
__m128 vstep  = _mm_load1_ps(&step);
__m128 sum    = _mm_load1_ps(&scalar_zero);
__m128 xvec; __m128 denom;  __m128 eye;

for (int i=0;i< num_steps; i=i+4){          // unroll loop 4 times
ival       = (float)i; // and assume num_steps%4 = 0
eye = _mm_load1_ps(&ival);
xvec = _mm_mul_ps(_mm_add_ps(eye,ramp),vstep);
denom = _mm_add_ps(_mm_mul_ps(xvec,xvec),one);
sum = _mm_add_ps(_mm_div_ps(four,denom),sum);

}
_mm_store_ps(&vsum[0],sum);
pi = step * (vsum[0]+vsum[1]+vsum[2]+vsum[3]);
return pi;

}
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Pi Program: Vector intriniscs plus OpenMP
float pi_sse(int num_steps)

{  float scalar_one =1.0, scalar_zero = 0.0,  ival, scalar_four =4.0, step, pi, vsum[4];
float local_sum[NTHREADS];   // set NTHREADS elsewhere, often to num of cores
step = 1.0/(float) num_steps;  pi = 0.0;

#pragma omp parallel
{    int i, ID=omp_get_thread_num();

__m128 ramp   = _mm_setr_ps(0.5, 1.5, 2.5, 3.5);
__m128 one     = _mm_load1_ps(&scalar_one);
__m128 four    = _mm_load1_ps(&scalar_four);
__m128 vstep  = _mm_load1_ps(&step);
__m128 sum    = _mm_load1_ps(&scalar_zero);
__m128 xvec; __m128 denom;  __m128 eye;

#pragma omp for
for (int i=0;i< num_steps; i=i+4){           

ival       = (float)i;
eye = _mm_load1_ps(&ival);
xvec = _mm_mul_ps(_mm_add_ps(eye,ramp),vstep);
denom = _mm_add_ps(_mm_mul_ps(xvec,xvec),one);
sum = _mm_add_ps(_mm_div_ps(four,denom),sum);

}
_mm_store_ps(&vsum[0],sum);
local_sum[ID] = step * (vsum[0]+vsum[1]+vsum[2]+vsum[3]);

}
for(int k = 0; k<NUM_THREADS;k++) pi+=local_sum[k];

return pi;
}

To parallelize with OpenMP:
1. Promote local_sum to an 

array to there is a variable 
private to each thread but 
available after the parallel 
region

2. Add parallel region and 
declare vector registers 
inside the parallel region 
so each thread has their 
own copy.

3. Add workshop loop (for) 
construct

4. Add local sums after the 
parallel region to create 
the final value for pi
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PI program Results: The details
4194304 steps Times in Seconds (50 runs, min time reported)

0

0.001

0.002

0.003

0.004

0.005

0.006

Base: lits
float -no-vec

Lits float,
autovrec

List Float,
OMP SIMD

Lits Float,
OMP SIMD

Par For

SSE SSE, OMP
par for

run times(sec)

– Intel Core i7, 2.2 Ghz, 8 GM 1600 MHz DDR3, Apple MacBook Air OS X 10.10.5.
– Intel(R) C Intel(R) 64 Compiler XE for applications running on Intel(R) 64, Version 15.0.3.187 Build 20150408

Float, autovec,     0.0023 secs
Float, OMP SIMD, 0.0028 secs
Float, SSE,           0.0016 secs



Explicit Vectorization – Performance Impact
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Source: M. Klemm, A. Duran, X. Tian, H. Saito, D. Caballero, and X. Martorell, “Extending 
OpenMP with Vector Constructs for Modern Multicore SIMD Architectures. In Proc. of the Intl. 
Workshop on OpenMP”, pages 59-72, Rome, Italy, June 2012. LNCS 7312.

Explicit Vectorization looks better when you move to more complex problems.



Back-up

• Memory Hierarchy
• Vector instructions
• Computer networks
• Design Patterns
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An early focus on networks
• Early machines were:
– Collection of microprocessors.
– Communication was performed using bi-directional queues 

between nearest neighbors.
• Messages were forwarded by processors on path.
– “Store and forward” networking

• There was a strong emphasis on topology in algorithms, 
in order to minimize the number of hops.



Properties of a Network: Bisection Bandwidth:
• Bisection bandwidth:  bandwidth across smallest cut that 

divides network into two equal halves
• Bandwidth across “narrowest” part of the network

bisection 
cut

not a 
bisection
cut 

bisection bw= link bw bisection bw = sqrt(n) * link bw

• Bisection bandwidth is important for algorithms in which 
all processors need to communicate with all others



Early Networks for connecting processors
• Hpercube: Number of nodes N = 2d   for dimension d.
– Diameter = d. 
– Bisection bandwidth = N/2.

0d         1d         2d               3d                  4d

• Popular in early machines  
– Lots of clever algorithms. 

• Greycode addressing:
– Each node connected to                                                                            

d others with 1 bit different. 001000

100

010 011

111

101

110



Meshes and Tori
Two dimensional mesh 
• Diameter = 2 * (sqrt( N ) – 1)
• Bisection bandwidth =   sqrt(N)

• Intel MPPs from Delta on used a 2D mesh.
• Cray T3D used 3D Torus.
• Mesh and Torus networks are natural fits for algorithms that work with 2D 

and/or 3D arrays.

Two dimensional torus
• Diameter = sqrt( N )
• Bisection bandwidth =   2* sqrt(N)

N = the number of nodes in the network



Trees
• Diameter = log n.
• Bisection bandwidth = 1.
• Easy layout as planar graph.
• Many tree algorithms (e.g., summation).
• Fat trees avoid bisection bandwidth problem:
– More (or wider) links near top.
– Example: Thinking Machines CM-5.  IBM SP.



Back-up

• Memory Hierarchy
• Vector instructions
• Computer networks
• Design Patterns
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Alexander’s Pattern Language

• Christopher Alexander’s approach to (civil) 
architecture:
– "Each pattern describes a problem which 

occurs over and over again in our 
environment, and then describes the core 
of the solution to that problem, in such a 
way that you can use this solution a 
million times over, without ever doing it 
the same way twice.“ Page x, A Pattern 
Language, Christopher Alexander

• Alexander’s 253 (civil) architectural patterns
range from the creation of cities (2. 
distribution of towns) to particular building 
problems (232. roof cap)

• A pattern language is an organized  way of 
tackling an architectural problem using 
patterns

• Main limitation:
– It’s about civil not software architecture!!!



Computational Patterns

The Dwarfs from “The Berkeley View” (Asanovic et al.)
Dwarfs form our key computational patterns



Patterns for Parallel Programming (PLPP)

• PLPP is the first attempt to develop a 
complete pattern language for parallel 
software development.

• PLPP is a great model for a pattern 
language for parallel software

• PLPP mined scientific applications 
that utilize a
monolithic application style 

•PLPP doesn’t help us much with 
horizontal composition 

•Much more useful to us than: Design 
Patterns:  Elements of Reusable 
Object-Oriented Software, Gamma, 
Helm, Johnson & Vlissides, Addison-
Wesley, 1995.



Structural programming patterns

nIn order to create more 
complex software it is 
necessary to compose 
programming patterns 

nFor this purpose, it has been 
useful to induct a set of 
patterns known as 
“architectural styles”

nExamples:
– pipe and filter
– event based/event driven
– layered
– Agent and 

repository/blackboard
– process control
– Model-view-controller



66 13 dwarves

To get frameworks 
right … start with an 
understanding of 
software 
architecture

PLPP: Pattern 
language of 

Parallel 
Programming
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Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Model-View-Controller 

Iterative-Refinement

Map-Reduce

Layered-Systems

Puppeteer

Pipe-and-Filter

Agent-and-Repository

Process-Control

Event-Based/Implicit-Invocation

Arbitrary-Static-Task-Graph

Unstructured-Grids

Structured-Grids
Graphical-Models
Finite-State-Machines
Backtrack-Branch-and-Bound
N-Body-Methods
Circuits
Spectral-Methods
Monte-Carlo

Applications

Structural Patterns Computational Patterns

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event 
Geometric-Decomposition
Speculation

SPMD
Kernel-Par.

Fork/Join
Actors
Vector-Par

Distributed-Array
Shared-Data

Shared-Queue
Shared-Map
Parallel Graph Traversal

Coordinating Processes
Stream processing 

Parallel Execution Patterns

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns

Communication

Shared Address Space Threads

Task Driven Execution

Algorithms and Data structureProgram structure

Synchronization

Loop-Par.
Task-queue

Thread/proc management

Concurrency Foundation constructs (not expressed as patterns)

Task Decomposition
Data Decomposition

Ordered task groups
Data sharing

Design Evaluation

Finding Concurrency Patterns

OPL/PLPP 2012
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Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra
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SPMD
Kernel-Par.
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Vector-Par

Distributed-Array
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Parallel Graph Traversal

Coordinating Processes
Stream processing 

Parallel Execution Patterns

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns

Communication

Shared Address Space Threads

Task Driven Execution

Algorithms and Data structureProgram structure

Synchronization

Loop-Par.
Task-queue

Thread/proc management

Concurrency Foundation constructs (not expressed as patterns)

Task Decomposition
Data Decomposition

Ordered task groups
Data sharing

Design Evaluation

Finding Concurrency Patterns

OPL/PLPP 2012

Garlan and Shaw
Architectural Styles

Berkeley View
13 dwarfs



Divide and Conquer

• Split the problem into smaller sub-problems; continue until 
the sub-problems can be solve directly

n 3 Options:
¨ Do work as you split 

into sub-problems
¨ Do work only at the 

leaves
¨ Do work as you 

recombine

69

subproblem

subsolution

subproblem subproblem

problem

solution

subsolution subsolution

subproblem

subsolution

subproblem subproblem

subsolution subsolution

merge

merge merge

split

splitsplit

solve solvesolvesolve


