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Introduction
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To support my kayaking habit, I 
work as a parallel programmer

Which means I know how to turn 
math into lines on a speedup plot
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Preliminaries: Part 1

• Disclosures
–The views expressed in this tutorial are those of the people delivering the 

tutorial. 
– We are not speaking for our employers.
– We are not speaking for the OpenMP ARB

• We take these tutorials VERY seriously:
–Help us improve … tell us how you would make this tutorial better.



5

Preliminaries: Part 2
• Our plan for the day .. Active learning!
–We will mix short lectures with short exercises.
–You will use your laptop to connect to a multiprocessor server.

• Please follow these simple rules
–Do the exercises that we assign and then change things around and 

experiment.
– Embrace active learning!

–Don’t cheat:  Do Not look at the solutions before you complete an exercise … 
even if you get really frustrated.



Grab content from github
• Clone the parallel programming course git hub repository
– git clone https://github.com/tgmattso/ParProgCourse.git

• We will use the exercises in the directory:   Exercises/OpenMP

• These lectures assume familiarity with C.  A simple C program the text of which explains all the C you 
need to know for this tutorial is included with the exercises
– Exercises/learningC.c

• The slides for this lecture are in the file: Openmp_Intro_hands_on.pdf

• There are also three other lectures we won’t be covering … for you to study on your own:  
– Par_Comp_Intro_short.pdf, 
– MPI_intro_hands_on.pdf, 
– Other_par_prog_envs.pdf

• If we need to use slurm to submit jobs, this repository has information on how to use slurm on Adroit      
– https://github.com/PrincetonUniversity/hpc_beginning_workshop/tree/2021fall/RC_example_jobs/cxx/multithreaded
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https://github.com/PrincetonUniversity/hpc_beginning_workshop/tree/2021fall/RC_example_jobs/cxx/multithreaded
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Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory Models and Point-to-Point Synchronization
– Programming your GPU with OpenMP



C$OMP TASKGROUP
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OpenMP* Overview

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL  REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok) 

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP  SINGLE PRIVATE(X)

C$OMP SECTIONS 

C$OMP TASKWAIT

C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP  BARRIER

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

#pragma omp target teams distribute parallel for simd

#pragma omp atomic capture

#pragma omp single

OpenMP:  An API for Writing Parallel Applications

§A set of compiler directives and library routines  for parallel application programmers

§Greatly simplifies writing multi-threaded (MT) programs in Fortran, C and C++

§Also supports non-uniform memories, vectorization and GPU programming  

#pragma omp atomic seq_cst



The Growth of Complexity in OpenMP
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The full spec is overwhelming. We focus on the Common Core: the 21 items most people restrict themselves to

0

100

200

300

400

500

600

1995 2000 2005 2010 2015 2020 2025

Chart Title

1.0

1.0 1.1 2.0

2.5
3.0 3.1

4.0

4.5

5.0*

5.1*

5.2*
tr10

2.0

Fortran spec
C/C++ spec
Merged C/C++ and Fortran spec

1995 2000 2005 2010 2015 2020 2025
0

500

600

400

300

200

100

Page Counts (not including front matter, indices or appendices) for OpenMP Specs

Page C
ounts 

Our goal in 1997 … A simple interface for application programmers 



OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved execution across threads.

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.  
SPMD pattern: Create threads with a parallel region and split up the work using the number of 
threads and the thread ID.  

double omp_get_wtime() Speedup and Amdahl's law.    False sharing and other performance issues.

setenv OMP_NUM_THREADS  N Setting the internal control variable for the default number of threads with an environment 
variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.
Revisit interleaved execution. 

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

default(none) Force explicit definition of each variable’s storage attribute 

nowait Disabling implied barriers on workshare constructs, the high cost of barriers, and the flush 
concept (but not the flush directive).

#pragma omp single Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 21 items
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OpenMP Basic Definitions: Basic Solution Stack
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OpenMP Runtime library

OS/system support for shared memory and threading
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OpenMP Basic Definitions: Basic Solution Stack
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For the OpenMP Common Core, we focus on Symmetric Multiprocessor Case …. 
i.e., lots of threads with “equal cost access” to memory 12
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OpenMP Basic Syntax
• Most of the constructs in OpenMP are compiler directives.

C and C++ Fortran
Compiler directives

#pragma omp construct [clause [clause]…] !$OMP construct [clause [clause] …]

Example
#pragma omp parallel private(x)
{

}

!$OMP PARALLEL PRIVATE(X)

!$OMP END PARALLEL

Function prototypes and types:
#include <omp.h> use OMP_LIB

• Most OpenMP constructs apply to a “structured block”.
– Structured block: a block of one or more statements with one point of entry at the top and one point of exit at the bottom. 
– It’s OK to have an exit() within the structured block.
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Exercise, Part A: Hello World
Verify that your environment works

• Write a program that prints “hello world”.

#include<stdio.h>
int main()
{

printf(“ hello ”);
printf(“ world \n”);

}

https://github.com/tgmattso/OmpCommonCore.git
• To download the slides:

git clone https://github.com/tgmattso/OpenMPCommonCore.git

https://github.com/tgmattso/OmpCommonCore.git
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Exercise, Part B: Hello World
Verify that your OpenMP environment works

• Write a multithreaded program that prints “hello world”.

#include <stdio.h>
int main()
{

printf(“ hello ”);
printf(“ world \n”);

}

Switches for compiling and linking

gcc -fopenmp Gnu (Linux, OSX)

cc -qopenmp Intel (Linux@NERSC)

icl /Qopenmp Intel (windows)

icc -fopenmp Intel (Linux, OSX)

#pragma omp parallel

{

#include <omp.h>

}

git clone https://github.com/tgmattso/OpenMP_Common_Core.git
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Solution
A Multi-Threaded “Hello World” Program

• Write a multithreaded program where each thread prints “hello world”.

#include <omp.h>
#include <stdio.h>
int main()
{

#pragma omp parallel
{

printf(“ hello ”);
printf(“ world \n”);

}
}

Sample Output:
hello hello world

world

hello  hello world

world

!"#$%&'($)*+,#'-(*#

!"#"$$%$&#%'()*&+(,-&
.%/"0$,&*012%#&)/&,-#%".3

4*.&)/&,-%&!"#"$$%$&#%'()*

The statements are interleaved based on how the operating schedules the threads 
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Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory Models and Point-to-Point Synchronization
– Programming your GPU with OpenMP
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OpenMP Execution model: 

Fork-Join Parallelism: 
u Initial thread spawns a team of threads as needed.

uParallelism added incrementally until performance goals are met, i.e., the sequential 
program evolves into a parallel program.

Parallel Regions

Initial 
Thread

A Nested 
Parallel 
Region

!"#$"%&'()*+(,&-
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Thread Creation: Parallel Regions
• You create threads in OpenMP* with the parallel construct.
• For example, to create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID,A);

}

• Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread 
executes  a 
copy of the 
code within 

the 
structured 

block

Runtime function to 
request a certain 
number of threads

Runtime function 
returning a thread ID



Thread Creation: Parallel Regions Example

• Each thread executes the 
same code redundantly.

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID, A);

}
printf(“all done\n”);

omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single copy of A is 
shared between all 

threads.

Threads wait here for all threads to finish before 
proceeding (i.e., a barrier)

20
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Thread creation: How many threads did you actually get?

• Request a number of threads with omp_set_num_threads()
• The number requested may not be the number you actually get.

– An implementation may silently give you fewer threads than you requested.
– Once a team of threads has launched, it will not be reduced.

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID       = omp_get_thread_num();

int nthrds = omp_get_num_threads();
pooh(ID,A);

}

• Each thread calls pooh(ID,A) for ID = 0 to nthrds-1

Each thread 
executes  a 
copy of the 
code within 

the 
structured 

block

Runtime function to 
request a certain 

number of threads

Runtime function to 
return actual 

number of threads 
in the team
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An Interesting Problem to Play With 
Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx = Dx å F(xi) » p
i = 0

N

Mathematically, we know that:

We can approximate the integral as a sum of 
rectangles:

Where each rectangle has width Dx and height F(xi) at 
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2 )

4.0

2.0

1.0
X0.0

i = 0

N
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Serial PI Program

static long num_steps = 100000;
double step;
int main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

See ParProgCourse/Exercises/OpenMP/pi.c
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Serial PI Program

#include <omp.h>
static long num_steps = 100000;
double step;
int main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
double tdata = omp_get_wtime();
for (i=0;i< num_steps; i++){

x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;
tdata = omp_get_wtime() - tdata;
printf(“ pi = %f in %f secs\n”,pi, tdata);

}

See ParProgCourse/Exercises/OpenMP/pi.c

The library routine 
get_omp_wtime() 
is used to find the 

elapsed “wall 
time” for blocks of 

code
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Exercise: the Parallel Pi Program
• Create a parallel version of the pi program using a parallel construct:

#pragma omp parallel
• Pay close attention to shared versus private variables.
• In addition to a parallel construct, you will need the runtime library routines
– int omp_get_num_threads();
– int omp_get_thread_num();
–double omp_get_wtime();
–omp_set_num_threads();

.(/#'($'0#)1$,0'0($)#'2'-(3#,'"1($4'($'45#'"204

.56#2,'78'16'62$9

:+/;#6'1-'456#2,0'($'45#'4#2/

<#=+#04'2'$+/;#6'1-'456#2,0'($'45#'4#2/
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Hints: the Parallel Pi Program
• Use a parallel construct:

#pragma omp parallel

• The challenge is to:
– divide loop iterations between threads (use the thread ID and the number of threads).
– Create an accumulator for each thread to hold partial sums that you can later combine to 

generate the global sum.

• In addition to a parallel construct, you will need the runtime library routines
– int omp_set_num_threads();
– int omp_get_num_threads();
– int omp_get_thread_num();
– double omp_get_wtime();
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SPMD: Single Program Mulitple Data
• Run the same program on P processing elements where P can be arbitrarily large. 

MPI programs almost always use this pattern … it is probably the 
most commonly used pattern in the history of parallel programming.

• Use the rank … an ID ranging from 0 to (P-1) … to select between a set of tasks and to manage any shared 
data structures. 

Replicate the program.

Add glue code

Break up the data



A brief digression to talk about 
performance issues in parallel computing
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Consider performance of parallel programs

Load Data Compute T1 Consume Results Compute TN
…

Timeseq(1) = Tload + N*Ttask + Tconsume

Compute N independent  tasks on one processor

Ideally Cut 
runtime by ~1/P 
(Note: Parallelism 
only speeds-up the 
concurrent part)

…

Timepar(P) = Tload + (N/P)*Ttask + Tconsume

Compute N independent  tasks with P processors

Load Data

Compute T1

Compute TN

Consume Results 



Talking about performance

§Speedup: the increased 
performance from running on P 
processors.  )(

)1(
)(

PTime
Time

PS
par

seq=

PPS =)(

PPS >)(

n Perfect Linear Speedup:
happens when no parallel 
overhead and algorithm is 
100% parallel.  

n Super-linear Speedup: typically 
due to cache effects … i.e. as P 
grows, aggregate cache size 
grows so more of the problem 
fits in cache 

31



Amdahl’s Law
• What is the maximum speedup you can expect from a parallel program?
• Approximate the runtime as a part that can be sped up with additional processors and a part that 

is fundamentally serial. 

seqpar Time
P
fractionparallelfractionserialPTime *)__()( +=

• If you had an unlimited number of processors:

• If serial_fraction is a and parallel_fraction is (1- a) then the speedup is: 

S(P) =
Timeseq

Timepar (P)
=

Timeseq
(α +1−α

P
)*Timeseq

=
1

α +
1−α
P

¥®P

• The maximum possible speedup is:
a
1

=S Amdahl’s 
Law

32



Amdahl’s Law
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So now you should understand my silly introduction slide.

34

We measure our 
success as parallel 
programmers by how 
close we come to ideal 
linear speedup.

A good parallel 
programmer always 
figures out when you 
fall off the linear 
speedup curve and 
why that has 
occurred.



Now that you understand how to 
think about parallel performance, 

lets get back to OpenMP

35



Internal control variables and how to control the 
number of threads in a team
• We’ve used the following construct to control the number of threads. (e.g. to request 12 threads):
– omp_set_num_threads(12)

• What does omp_set_num_threads() actually do?
– It resets an “internal control variable” the system queries to define the default number of threads to 

request on subsequent parallel constructs.

• Is there an easier way to change this internal control variable … perhaps one that doesn’t require 
re-compilation?  Yes.
– When an OpenMP program starts up, it queries an environment variable OMP_NUM_THREADS and sets 

the appropriate internal control variable to the value of OMP_NUM_THREADS
– For example, to set the initial, default number of threads to request in OpenMP from my apple laptop

> export OMP_NUM_THREADS=12

36
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Exercise

• Go back to your parallel pi program and explore how well it scales with the number 
of threads. 

• Can you explain your performance with Amdahl’s law?  If not what else might be 
going on?

– int omp_get_num_threads();
– int omp_get_thread_num();
–double omp_get_wtime();
–omp_set_num_threads();
–export OMP_NUM_THREADS = N

K$'#$N(61$/#$4'N26(2;*#'
41'0#4'45#',#-2+*4'$+/;#6'
1-'456#2,0'41'6#=+#04'41':



Results*

threads 1st

SPMD*
1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

*SPMD: Single Program Multiple Data

Intel compiler (icpc) with default 
optimization level (O2) on Apple OS X 
10.7.3 with a dual core (four HW thread) 
Intel® CoreTM i5 processor at 1.7 Ghz and 
4 Gbyte DDR3 memory at 1.333 Ghz.
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Why Such Poor Scaling?    False Sharing
• If independent data elements happen to sit on the same cache line, each update will cause the 

cache lines to “slosh back and forth” between threads … This is called “false sharing”.

• If you promote scalars to an array to support creation of an SPMD program, the array elements are 
contiguous in memory and hence share cache lines … Results in poor scalability.

• Solution: Pad arrays so elements you use are on distinct cache lines.

Sum[0] Sum[1] Sum[2] Sum[3] Sum[0] Sum[1] Sum[2] Sum[3]
Core 0 Core 1

L1 $ lines L1 $ lines

HW thrd. 0 HW thrd. 1 HW thrd. 2 HW thrd. 3

Shared last level cache and connection to I/O and DRAM
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Example: Eliminate false sharing by padding the sum array



Results*: PI Program, Padded Accumulator
• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st

SPMD
1st

SPMD 
padded

1 1.86 1.86
2 1.03 1.01
3 1.08 0.69
4 0.97 0.53

*Intel compiler (icpc) with default 
optimization level (O2) on Apple OS 
X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor 
at 1.7 Ghz and 4 Gbyte DDR3 
memory at 1.333 Ghz.
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Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory Models and Point-to-Point Synchronization
– Programming your GPU with OpenMP
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Synchronization

• High level synchronization included in the common core:
–critical
–barrier

• Other, more advanced, synchronization operations:
–atomic
–ordered
– flush
– locks (both simple and nested)

4)2,&(+215"%1+2$1*$-*'#$%+$1.6+*'$+(#'($
,+2*%("12%*$"2#$%+$6(+%',%$",,'**$%+$*&"('#$#"%"
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Synchronization: critical  

• Mutual exclusion: Only one thread at a time can enter a critical region.

float  res;

#pragma omp parallel

{     float B;   int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

B =  big_SPMD_job(id, nthrds);

#pragma omp critical 
res += consume (B);

}

Threads wait their turn 
– only one thread at a 
time calls consume()
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Synchronization: barrier
• Barrier: a point in a program all threads much reach before any threads are allowed to proceed.
• It is a “stand alone” pragma meaning it is not associated with user code … it is an executable 

statement. 

double Arr[8], Brr[8];            int numthrds;

omp_set_num_threads(8)

#pragma omp parallel

{    int id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id==0) numthrds = nthrds; 

Arr[id] = big_ugly_calc(id, nthrds);

#pragma omp barrier 
Brr[id] = really_big_and_ugly(id, nthrds, Arr); 

}

Threads wait until all 
threads hit the barrier.  
Then they can go on.
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Exercise
• In your first Pi program, you probably used an array to create space for each thread to store its partial 

sum.
• If array elements happen to share a cache line, this leads to false sharing.

– Non-shared data in the same cache line so each update invalidates the cache line … in essence 
“sloshing independent data” back and forth between threads.

• Modify your “pi program” to avoid false sharing due to the partial sum array.
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
omp_set_num_threads();
#pragma parallel
#pragma critical



PI Program with False Sharing

*Intel compiler (icpc) with no 
optimization on Apple OS X 10.7.3 
with a dual core (four HW thread) 
Intel® CoreTM i5 processor at 1.7 Ghz
and 4 Gbyte DDR3 memory at 1.333 
Ghz.

threads 1st

SPMD
1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

Recall that promoting sum to an array made 
the coding easy, but led to false sharing and 
poor performance.
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Example: Using a  critical section to remove impact of false sharing 
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Results*: pi program critical section

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 
with a dual core (four HW thread) Intel® CoreTM i5 processor at 
1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st

SPMD
1st

SPMD 
padded

SPMD 
critical

1 1.86 1.86 1.87
2 1.03 1.01 1.00
3 1.08 0.69 0.68
4 0.97 0.53 0.53
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Example: Using a  critical section to remove impact of false sharing 
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• Creating Threads
• Synchronization
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• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory Models and Point-to-Point Synchronization
– Programming your GPU with OpenMP
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The Loop Worksharing Construct

• The loop worksharing construct splits up loop iterations among the threads in a team

76("8."$+.6 6"("00'0

9
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The loop control index I is made 
“private” to each thread  by default.  

Threads wait here until all 
threads are finished with the 

parallel loop before any proceed 
past the end of the loop
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Loop Worksharing Construct
A motivating example

for(i=0;i<N;i++)   { a[i] = a[i] + b[i];}

#pragma omp parallel
{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * (N / Nthrds)-1;
if (id == Nthrds-1)iend = N;
for(i=istart;i<iend;i++)   { a[i] = a[i] + b[i];}

}

#pragma omp parallel 
#pragma omp for   

for(i=0;i<N;i++)   { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel region

(SPMD Pattern)

OpenMP parallel region and 
a worksharing for construct
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Loop Worksharing Constructs: The schedule clause
• The schedule clause affects how loop iterations are mapped onto threads

– schedule(static [,chunk])
– Deal-out blocks of iterations of size “chunk” to each thread.

– schedule(dynamic[,chunk])
– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.

• Example:
– #pragma omp for schedule(dynamic, 10)

Schedule Clause When To Use
STATIC Pre-determined and predictable 

by the programmer

DYNAMIC Unpredictable, highly variable 
work per iteration

Least work at runtime : 
scheduling done at 
compile-time

Most work at runtime : 
complex scheduling 
logic used at run-time
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Combined Parallel/Worksharing Construct

• OpenMP shortcut: Put the “parallel” and the worksharing directive on the same line

double  res[MAX];  int i;
#pragma omp parallel 
{

#pragma omp for
for (i=0;i< MAX; i++) {

res[i] = huge();
} 

}

These are equivalent 

double  res[MAX];  int i;
#pragma omp parallel for

for (i=0;i< MAX; i++) {
res[i] = huge();

} 



56

Working with loops

• Basic approach
– Find compute intensive loops
– Make the loop iterations independent ... So they can safely execute in any order without 

loop-carried dependencies
– Place the appropriate OpenMP directive and test

int i, j, A[MAX];
j = 5;
for (i=0;i< MAX; i++) {

j +=2;
A[i] = big(j); 

} 

int i,  A[MAX];
#pragma omp parallel for
for (i=0;i< MAX; i++) {

int j = 5 + 2*(i+1);
A[i] = big(j); 

} Remove loop 
carried 
dependence

Note: loop index 
“i” is private by 
default
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Reduction

• We are combining values into a single accumulation variable (ave) … there is a true dependence 
between loop iterations that can’t be trivially removed.

• This is a very common situation … it is called a “reduction”.

• Support for reduction operations is included in most parallel programming environments.

double  ave=0.0, A[MAX];
int i;
for (i=0;i< MAX; i++) {

ave + = A[i];
} 
ave = ave/MAX; 

• How do we handle this case?
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Reduction
• OpenMP reduction clause:   

reduction (op : list)

• Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and initialized depending on the “op” (e.g. 0 for “+”).
– Updates occur on the local copy. 
– Local copies are reduced into a single value and combined with the original global value.

• The variables in “list” must be shared in the enclosing parallel region.  

double  ave=0.0, A[MAX];    int i;
#pragma omp parallel for reduction (+:ave)
for (i=0;i< MAX; i++) {

ave + = A[i];
} 
ave = ave/MAX; 
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OpenMP: Reduction operands/initial-values
• Many different associative operands can be used with reduction:
• Initial values are the ones that make sense mathematically.

Operator Initial value
+ 0
* 1
- 0

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value
& ~0
| 0

^ 0
&& 1
|| 0

Fortran Only

Operator Initial value
.AND. .true.
.OR. .false.

.NEQV. .false.
.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.

OpenMP includes user defined reductions 
and array-sections as reduction variables 

(we just don’t cover those topics here)
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Exercise: PI with loops

• Go back to the serial pi program and parallelize it with a loop construct
• Your goal is to minimize the number of changes made to the serial program.

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
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Example: PI with a loop and a reduction
#include <omp.h>
static long num_steps = 100000;         double step;
void main ()
{    int i; double x, pi, sum = 0.0; 

step = 1.0/(double) num_steps;
#pragma omp parallel 
{

double x;
#pragma omp for reduction(+:sum)

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
}

pi = step * sum;
}
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Example: PI with a loop and a reduction
#include <omp.h>
static long num_steps = 100000;         double step;
void main ()
{

double pi, sum = 0.0; 
step = 1.0/(double) num_steps;

#pragma omp parallel for reduction(+:sum)
for (int i=0;i< num_steps; i++){

double x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

B3(*'&1).%#*&5&3,<$%;&+%&
:0,&.%6$"#",()*3&6$)3%&,)&
+-%#%&,-%<&"#%&03%.&9&
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Results*: PI with a loop and a reduction

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st

SPMD
1st

SPMD 
padded

SPMD 
critical

PI Loop

1 1.86 1.86 1.87 1.91
2 1.03 1.01 1.00 1.02
3 1.08 0.69 0.68 0.80
4 0.97 0.53 0.53 0.68
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The nowait clause
• Barriers are really expensive.  You need to understand when they are implied 

and how to skip them when it’s safe to do so. 
double A[big], B[big], C[big];

#pragma omp parallel 
{

int id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier 
#pragma omp for 

for(i=0;i<N;i++){C[i]=big_calc3(i,A);}
#pragma omp for nowait

for(i=0;i<N;i++){ B[i]=big_calc2(C,  i); }
A[id] = big_calc4(id);

}
implicit barrier at the end 
of a parallel region

implicit barrier at the end of a for 
worksharing construct

no implicit barrier 
due to nowait
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Outline
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• Parallel Loops
• Data Environment
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– Memory Models and Point-to-Point Synchronization
– Programming your GPU with OpenMP
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Data Environment:
Default storage attributes

• Shared memory programming model: 
– Most variables are shared by default

• Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE variables
– C: File scope variables, static
– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called from parallel 

regions are PRIVATE
– Automatic variables within a statement block are PRIVATE.
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double A[10];
int main() {
int index[10];
#pragma omp parallel  

work(index);
printf(“%d\n”, index[0]);

}

extern double A[10];
void work(int *index) {
double temp[10];
static int count;
...

}

Data Sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are 
shared by all threads.

temp is local to each 
thread
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Data Sharing:  Changing storage attributes

• One can selectively change storage attributes for constructs using the 
following clauses* (note: list is a comma-separated list of variables)

–shared(list)
–private(list)
– firstprivate(list)

• These can be used on parallel and for constructs … other than shared 
which can only be used on a parallel construct

• Force the programmer to explicitly define storage attributes
–default (none) default() can only be used 

on parallel constructs
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Data Sharing: Private clause

int N = 1000;
extern void init_arrays(int N, double *A, double *B, double *C);

void example () {
int i, j;
double A[N][N], B[N][N], C[N][N];
init_arrays(N, *A, *B, *C);

#pragma omp parallel for private(j)
for (i = 0; i < 1000; i++)

for( j = 0; j<1000; j++)
C[i][j] = A[i][j] + B[i][j];

}

• private(var)  creates a new local copy of var for each thread.

OpenMP makes the loop 
control index on the 
parallel loop (i) private by 
default … but not for the 
second loop (j)
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Data Sharing: Private clause

void wrong() {
int tmp = 0;

#pragma omp parallel for private(tmp)
for (int j = 0; j < 1000; ++j) 

tmp += j;
printf(“%d\n”, tmp);

}

• private(var)  creates a new local copy of var for each thread.
– The value of the private copies is uninitialized
– The value of the original variable is unchanged after the region

tmp was not 
initialized

tmp is 0 here

When you need 
to refer to the 

variable tmp that 
exists prior to the 
construct, we call 

it the original 
variable.
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Data Sharing: Private and the original variable

int tmp;
void danger() {

tmp = 0;
#pragma omp parallel private(tmp)

work();
printf(“%d\n”, tmp);

}

• The original variable’s value is unspecified if it is referenced outside of the 
construct

– Implementations may reference the original variable or a copy ….. a dangerous 
programming practice!

– For example, consider what would happen if the compiler inlined work()?

extern int tmp;
void work() {

tmp = 5;
}

unspecified which 
copy of tmptmp has unspecified value



Firstprivate clause

• Variables initialized from a shared variable
• C++ objects are copy-constructed

72

incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i = 0; i <= MAX; i++) {

if ((i%2)==0) incr++;
A[i] = incr;

}

Each thread gets its own copy of 
incr with an initial value of 0

72
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Data sharing: 
A data environment test
• Consider this example of PRIVATE and FIRSTPRIVATE

• Are A,B,C private to each thread or shared inside the parallel region?
• What are their initial values inside and values after the parallel region?

variables:  A = 1,B = 1, C = 1
#pragma omp parallel private(B)  firstprivate(C)

Inside this parallel region ...
l “A” is shared by all threads; equals 1
l “B” and “C” are private to each thread.

– B’s initial value is undefined
– C’s initial value equals  1

Following the parallel region ...
l B and C revert to their original values of 1
l A is either 1 or the value  it was set to inside the parallel region
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Data Sharing: Default clause
• default(none): Forces you to define the storage attributes for variables that 

appear inside the static extent of the construct … if you fail the compiler will complain.   
Good programming practice!

• You can put the default clause on parallel and parallel + workshare constructs. 

The full OpenMP specification has other versions of the default clause, but they 
are not used very often so we skip them in the common core

#include <omp.h>
int main()
{

int i, j=5;      double x=1.0, y=42.0;
#pragma omp parallel for default(none) reduction(*:x)
for (i=0;i<N;i++){

for(j=0; j<3; j++)
x+= foobar(i, j, y);

}
printf(“ x is %f\n”,(float)x);

}

The static 
extent is the 
code in the 

compilation unit 
that contains 
the construct.

The compiler would 
complain about j and y, 
which is important since 

you don’t want j to be 
shared
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Exercise: Mandelbrot set area

• The supplied program (mandel.c) computes the area of a Mandelbrot set. 

• The program has been parallelized with OpenMP, but we were lazy and didn’t do 
it right.

• Find and fix the errors (hint … the problem is with the data environment). 

• Once you have a working version,  try to optimize the program.
– Try different schedules on the parallel loop.
– Try different mechanisms to support mutual exclusion … do the efficiencies change?

This exercises come from Mark Bull of EPCC (at University of Edinburgh)



The Mandelbrot Set  Area Program
#include <omp.h>
# define NPOINTS 1000
# define MXITR 1000
struct d_complex{

double r;     double i;
}; 
void testpoint(struct d_complex);
struct d_complex c;
int numoutside = 0;

int main(){
int i, j;
double area, error, eps = 1.0e-5;

#pragma omp parallel for private(c, j) firstprivate(eps)
for (i=0; i<NPOINTS; i++) {

for (j=0; j<NPOINTS; j++) {
c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;
testpoint(c);

}
}

area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-
numoutside)/(double)(NPOINTS*NPOINTS);

error=area/(double)NPOINTS;
}
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void testpoint(struct d_complex c){
struct d_complex z;

int iter;
double temp;

z=c;
for (iter=0; iter<MXITR; iter++){

temp = (z.r*z.r)-(z.i*z.i)+c.r;
z.i = z.r*z.i*2+c.i;
z.r = temp;
if ((z.r*z.r+z.i*z.i)>4.0) {
#pragma omp critical

numoutside++;
break;

}
}

}

• eps was not initialized
• Protect updates of numoutside
• Which value of c does testpoint() 

see?  Global or private?
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Memory Models …

l Multiple copies of a variable (such as 𝛾) may be present at various levels of cache, or in registers and 
they may ALL have different values.

l So which value of 𝛾 is the one a thread should see at any point in a computation?

l Programming models for Multithreading support shared memory.
l All threads share an address space … but consider the variable  𝛾
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Arithmetic 
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Register file

Core1
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Control 
Unit

Arithmetic 
Logic Unit

Register file

Core2

Shared Last Level Cache
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Memory Models …

l Multiple copies of a variable (such as 𝛾) may be present at various levels of cache, or in registers and 
they may ALL have different values.

l So which value of 𝛾 is the one a thread should see at any point in a computation?

l Programming models for Multithreading support shared memory.
l All threads share an address space … but consider the variable  𝛾

Shared Memory (DRAM)
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Register file
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𝛾

𝛾 𝛾

𝛾 𝛾

𝛾

A memory 
consistency model 

(or “memory model” 
for short) provides 
the rules needed to 

answer this question. 
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OpenMP and Relaxed Consistency

• Most (if not all) multithreading programming models (including OpenMP) supports 
a relaxed-consistency memory model
– Threads can maintain a temporary view of shared memory that is not consistent with that of 

other threads

– These temporary views are made consistent only at certain points in the program

– The operation that enforces consistency is called the flush operation*

*Note: in OpenMP 5.0 the name for the flush described here was changed to a ”strong flush”. This was done so we could 
distinguish the traditional OpenMP flush (the strong flush) from the new synchronizing flushes (acquire flush and release flush).
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Flush Operation

• Defines a sequence point at which a thread is guaranteed to see a consistent 
view of memory*
– Previous read/writes by this thread have completed and are visible to other threads
– No subsequent read/writes by this thread have occurred

• A flush operation is analogous to a fence in other shared memory APIs

* This applies to the set of shared variables visible to a thread at the point the flush is encountered.  We call this “the flush set”
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Flush Example

l Flush forces data to be updated in memory so other threads see the most 
recent value*

double A;

A = compute();

#pragma omp flush(A)

// flush to memory to make sure other
//  threads can pick up the right value  

Note: OpenMP’s flush is analogous to a fence in other shared memory APIs

* If you pass a list of variables to the flush directive, then that list is “the flush set”
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What is the BIG DEAL with Flush?

• Compilers routinely reorder instructions implementing a program
– Can better exploit the functional units, keep the machine busy, hide memory latencies, etc.

• Compilers generally cannot move instructions:
– Past a barrier
– Past a flush on all variables

• But it can move them past a flush with a list of variables so long as those variables 
are not accessed

• Keeping track of consistency when flushes are used can be confusing … 
especially if “flush(list)” is used.

a26$($Bd'45#'-*+05'1"#624(1$'O2'0461$B'-*+05P',1#0'$14'2)4+2**]'0]$)561$(_#',(--#6#$4'456#2,0@'74'
e+04'#$0+6#0'4524'2'456#2,’0'N26(2;*#0'26#'/2,#')1$0(04#$4'b(45'/2($'/#/16]'
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Flush and Synchronization

• A flush operation is implied by OpenMP synchronizations, e.g.,
– at entry/exit of parallel regions
– at implicit and explicit barriers
– at entry/exit of critical regions
….
(but not on entry to worksharing regions) 

WARNING:
If you find your self wanting to write code with explicit flushes, stop and get help.  It is very 

difficult to manage flushes on your own.  Even experts often get them wrong.

This is why we defined OpenMP constructs to automatically apply flushes most places where 
you really need them. 
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Irregular Parallelism
• Let’s call a problem “irregular” when one or both of the following hold:

– Data Structures are sparse
– Control structures are not basic for-loops

• Example: Traversing Linked lists:

• Using what we’ve learned so far, traversing a linked list in parallel using OpenMP 
is difficult.

p = listhead ;
while (p) { 
process(p);
p=p->next;

} 
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Exercise: Traversing linked lists  
• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at each node.
• Parallelize this program selecting from the following list of constructs:

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
schedule(static[,chunk]) or schedule(dynamic[,chunk])
private(), firstprivate(), default(none)

• Hint: Just worry about the while loop that is timed inside main().  You 
don’t need to make any changes to the “list functions”
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Linked Lists with OpenMP (without tasks)
• See the file solutions/linked_notasks.c

while (p != NULL) {
p = p->next;
count++;

}
struct node *parr = (struct node*) malloc(count*sizeof(struct node));
p = head;
for(i=0; i<count; i++) {

parr[i] = p;
p = p->next;

}
#pragma omp parallel 
{

#pragma omp for schedule(static,1)
for(i=0; i<count; i++)

processwork(parr[i]);
}

5)0*,&*012%#&)/&(,%13&(*&,-%&$(*?%.&$(3,

5):<&:)(*,%#&,)&%"6-&*).%&(*,)&"*&"##"<

!#)6%33&*).%3&(*&:"#"$$%$&+(,-&"&/)#&$)):

?&(1+%('#,'*,'@,%&+'.1*+')#"&'A5BC'DEF'G!HI'''@,%&+'@JKCL'')#$;/+&"'AM5A'01/+.'L

Number of 
threads

Schedule
Default Static,1

1 48 seconds 45 seconds

2 39 seconds 28 seconds



89

Linked Lists with OpenMP (without tasks)

while (p != NULL) {
p = p->next;
count++;

}
struct node *parr = (struct node*) malloc(count*sizeof(struct node));
p = head;
for(i=0; i<count; i++) {

parr[i] = p;
p = p->next;

}
#pragma omp parallel 
{

#pragma omp for schedule(static,1)
for(i=0; i<count; i++)

processwork(parr[i]);
}

5)0*,&*012%#&)/&(,%13&(*&,-%&$(*?%.&$(3,

5):<&:)(*,%#&,)&%"6-&*).%&(*,)&"*&"##"<

!#)6%33&*).%3&(*&:"#"$$%$&+(,-&"&/)#&$)):

?&(1+%('#,'*,'@,%&+'.1*+')#"&'A5BC'DEF'G!HI'''@,%&+'@JKCL'')#$;/+&"'AM5A'01/+.'L

Number of 
threads

Schedule
Default Static,1

1 48 seconds 45 seconds

2 39 seconds 28 seconds

With so much code to add and three 
passes through the data, this is really ugly.

There has got to be a better way to do this

• See the file solutions/linked_notasks.c



What are Tasks?

• Tasks are independent units of work

• Tasks are composed of:
– code to execute
– data to compute with

• Threads are assigned to perform the work of each 
task.
– The thread that encounters the task construct may execute 

the task immediately.
– The threads may defer execution until later

Serial Parallel

90



What are Tasks?

• The task construct includes a structured block of code

• Inside a parallel region, a thread encountering a task 
construct will package up the code block and its data 
for execution

• Tasks can be nested: i.e. a task may itself generate 
tasks.

Serial Parallel

A common Pattern is to have one thread create the tasks while the 
other threads wait at a barrier and execute the tasks

91
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Single Worksharing Construct

• The single construct denotes a block of code that is executed by only one thread 
(not necessarily the primary* thread).

• A barrier is implied at the end of the single block (can remove the barrier with a 
nowait clause).

#pragma omp parallel  
{

do_many_things();
#pragma omp single

{     exchange_boundaries();   }
do_many_other_things();

}

*This used to be called the “master thread”.  The term “master” has been deprecated in OpenMP 5.1 and replaced with the term “primary”.    



Task Directive

#pragma omp parallel
{ 
#pragma omp single
{ 

#pragma omp task
fred(); 

#pragma omp task
daisy(); 

#pragma omp task
billy(); 

} 
}

One Thread 
packages tasks

Create some threads

Tasks executed by 
some thread in some 
order

All tasks complete before this barrier is released

#pragma omp task [clauses]

structured-block    

93



Exercise: Simple tasks
• Write a program using tasks that will “randomly” generate one of two strings:

– “I think “ “race” “car”  “s are fun”
– “I think “ “car” “race”  “s are fun”

• Hint: use tasks to print the indeterminate part of the output (i.e. the “race” or “car” parts).    

• This is called a “Race Condition”.  It occurs when the result of a program depends on 
how the OS schedules the threads.

• NOTE: A “data race” is when threads “race to update a shared variable”.  They produce 
race conditions.  Programs containing data races are undefined (in OpenMP but also 
ANSI standards C++’11 and beyond).

#pragma omp parallel
#pragma omp task
#pragma omp single

94This exercise comes from Ruud van der Pas of Oracle



Racey Cars: Solution
#include <stdio.h>
#include <omp.h>
int main()
{  printf("I think");

#pragma omp parallel
{

#pragma omp single
{

#pragma omp task
printf(" car");

#pragma omp task
printf(" race");

}
}
printf("s");
printf(" are fun!\n");

} 95



Data Scoping with Tasks
• Variables can be shared, private or firstprivate with respect to task

• These concepts are a little bit different compared with threads:
– If a variable is shared on a task construct, the references to it inside the construct 

are to the storage with that name at the point where the task was encountered

– If a variable is private on a task construct, the references to it inside the construct 
are to new uninitialized storage that is created when the task is executed

– If a variable is firstprivate on a construct, the references to it inside the construct are 
to new storage that is created and initialized with the value of the existing storage of 
that name when the task is encountered

96 96
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Data Scoping Defaults
• The behavior you want for tasks is usually firstprivate, because the task may not be 

executed until later (and variables may have gone out of scope)
– Variables that are private when the task construct is encountered are firstprivate by default

• Variables that are shared in all constructs starting from the innermost enclosing parallel 
construct are shared by default

#pragma omp parallel shared(A) private(B)
{

...
#pragma omp task

{
int C;
compute(A, B, C);

}
}

A is shared
B is firstprivate
C is private

97
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Exercise: Traversing linked lists  
• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at each node.
• Parallelize this program selecting from the following list of constructs:

#pragma omp parallel
#pragma omp single
#pragma omp task
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
private(), firstprivate()

• Hint: Just worry about the contents of main().  You 
don’t need to make any changes to the “list functions”
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Parallel Linked List Traversal
#pragma omp parallel
{ 
#pragma omp single
{ 
p = listhead ;
while (p) { 

#pragma omp task firstprivate(p)       
{         
process (p);

}
p=next (p) ;

} 
} 

}

makes a copy of p 
when the task is 
packaged

Only one thread 
packages tasks

99



100

When/Where are Tasks Complete?
• At thread barriers (explicit or implicit)

– all tasks generated inside a region must complete at the next barrier encountered by the threads
in that region.  Common examples:
– Tasks generated inside a single construct:  all tasks complete before exiting the barrier on the 

single.
– Tasks generated inside a parallel region: all tasks complete before exiting the barrier at the end of 

the parallel region.   

• At taskwait directive
– i.e. Wait until all tasks defined in the current task have completed.  

#pragma omp taskwait

– Note: applies only to tasks generated in the current task, not to “descendants” .

100



Example
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#pragma omp parallel
{ 
#pragma omp single 
{ 

#pragma omp task
fred(); 

#pragma omp task
daisy(); 

#pragma omp taskwait
#pragma omp task

billy(); 
} 

}

fred() and daisy()
must complete before 
billy() starts, but 
this does not include 
tasks created inside 
fred() and daisy()

All tasks including those created 
inside fred() and daisy() must 
complete before exiting this barrier

101



Example

102

#pragma omp parallel
{ 
#pragma omp single nowait
{ 

#pragma omp task
fred(); 

#pragma omp task
daisy(); 

#pragma omp taskwait
#pragma omp task

billy(); 
} 

}

The barrier at the end of the 
single is expensive and not 
needed since you get the 
barrier at the end of the 
parallel region.   So use 
nowait to turn it off.

All tasks including those created 
inside fred() and daisy() must 
complete before exiting this barrier

102



Example: Fibonacci numbers

• Fn = Fn-1 + Fn-2

• Inefficient O(n2) recursive 
implementation!

int fib (int n)
{

int x,y;
if (n < 2) return n;

x = fib(n-1);
y = fib (n-2);
return (x+y);

}

Int main()
{

int NW = 5000;
fib(NW);

}
103



Parallel Fibonacci

104

• Binary tree of tasks

• Traversed using a recursive 
function

• A task cannot complete until all 
tasks below it in the tree are 
complete (enforced with taskwait)

• x,y are local, and so by default 
they are  private to current task

– must be shared on child tasks so they 
don’t create their own firstprivate
copies at this level! 

int fib (int n)
{   int x,y;

if (n < 2) return n;

#pragma omp task shared(x)
x = fib(n-1);

#pragma omp task shared(y)
y = fib (n-2);

#pragma omp taskwait
return (x+y);

}

Int main()
{  int NW = 5000;

#pragma omp parallel
{ 

#pragma omp single
fib(NW);

}
} 104



Divide and Conquer

• Split the problem into smaller sub-problems; continue until the sub-problems can be 
solved directly

n 3 Options for parallelism:
¨ Do work as you split 

into sub-problems
¨ Do work only at the 

leaves
¨ Do work as you 

recombine

subproblem

subsolution

subproblem subproblem

problem

solution

subsolution subsolution

subproblem

subsolution

subproblem subproblem

subsolution subsolution

merge

merge merge

split

splitsplit

solve solvesolvesolve
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Exercise: PI with tasks

• Go back to the original pi.c program
– Parallelize this program using OpenMP tasks

#pragma omp parallel
#pragma omp task
#pragma omp taskwait
#pragma omp single
double omp_get_wtime()
int omp_get_thread_num();
int omp_get_num_threads();

• Hint: first create a recursive pi program and verify that it works.  Think about the 
computation you want to do at the leaves.  If you go all the way down to one 
iteration per leaf-node, won’t you just swamp the system with tasks?



Program: OpenMP tasks  
#include <omp.h>

static long num_steps = 100000000;
#define MIN_BLK  10000000
double pi_comp(int Nstart,int Nfinish,double step)
{   int i,iblk;

double x, sum = 0.0,sum1, sum2;
if (Nfinish-Nstart < MIN_BLK){

for (i=Nstart;i< Nfinish; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x); 

}
}
else{

iblk = Nfinish-Nstart;
#pragma omp task shared(sum1)

sum1 = pi_comp(Nstart,         Nfinish-iblk/2,step);
#pragma omp task shared(sum2)

sum2 = pi_comp(Nfinish-iblk/2, Nfinish,       step);
#pragma omp taskwait

sum = sum1 + sum2;
}return sum;

} 107

int main ()
{

int i;
double step, pi, sum;
step = 1.0/(double) num_steps;
#pragma omp parallel  
{

#pragma omp single
sum =    

pi_comp(0,num_steps,step);
}
pi = step * sum;

}



Results*: Pi with tasks

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st SPMD SPMD 
critical

PI Loop Pi tasks

1 1.86 1.87 1.91 1.87

2 1.03 1.00 1.02 1.00

3 1.08 0.68 0.80 0.76

4 0.97 0.53 0.68 0.52

108



109

Using Tasks

• Don’t use tasks for things already well supported by OpenMP
–e.g. standard do/for loops
– the overhead of using tasks is greater

• Don’t expect miracles from the runtime
–best results usually obtained where the user controls the number 

and granularity of tasks

109
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OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved execution across threads.

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.  
SPMD pattern: Create threads with a parallel region and split up the work using the number of 
threads and the thread ID.  

double omp_get_wtime() Speedup and Amdahl's law.    False sharing and other performance issues.

setenv OMP_NUM_THREADS  N Setting the internal control variable for the default number of threads with an environment 
variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.
Revisit interleaved execution. 

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

default(none) Force explicit definition of each variable’s storage attribute 

nowait Disabling implied barriers on workshare constructs, the high cost of barriers, and the flush 
concept (but not the flush directive).

#pragma omp single Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 21 items
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There is Much More to OpenMP than the Common Core

• Synchronization mechanisms
– locks, synchronizing flushes and several forms of atomic

• Data environment
– lastprivate, threadprivate, default(private|shared)

• Fine grained task control
– dependencies, tied vs. untied tasks, task groups, task loops …

• Vectorization constructs
– simd, uniform, simdlen, inbranch vs. nobranch, ….

• Map work onto an attached device (such as a GPU)
– target, teams distribute parallel for, target data …

• … and much more.  The OpenMP 5.0 specification is over 618 pages!!! 

112

Don’t become overwhelmed.   Master the common core and move on to other 
constructs when you encounter problems that require them.
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OpenMP Organizations

• OpenMP Architecture Review  Board (ARB) URL, the “owner” of the OpenMP 
specification:

www.openmp.org

• OpenMP User’s Group (cOMPunity) URL:
www.compunity.org

!"#$%&'()'"*+$,(%&$#-"$./0$1&*$23456&%#78
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Resources
• www.openmp.org has a wealth of helpful resources

114

Including a comprehensive collection of 
examples of code using the OpenMP constructs

http://www.openmp.org/


To learn OpenMP:
• An exciting new book that Covers the 

Common Core of OpenMP plus a few key 
features beyond the common core that 
people frequently use

• It’s geared towards people learning 
OpenMP, but as one commentator put it 
… everyone at any skill level should 
read the memory model chapters.

• Available from MIT Press

115www.ompcore.com for code samples and the Fortran supplement

http://www.ompcore.com/


Books about OpenMP

116

A great book that covers 
OpenMP features beyond 

OpenMP 2.5
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Background references

l A book about how to “think 
parallel” with examples in 
OpenMP, MPI and java

A great book that  explores key 
patterns with Cilk, TBB, 
OpenCL, and OpenMP (by 
McCool, Robison, and Reinders)
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The Loop Worksharing Constructs

• The loop worksharing construct splits up loop iterations among the threads in a team
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The variable I is made “private” to each 
thread  by default.  You could do this 
explicitly with a “private(I)” clause
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Loop Worksharing Constructs: The schedule clause

• The schedule clause affects how loop iterations are mapped onto threads
– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.
– schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.
– schedule(guided[,chunk])

– Threads dynamically grab blocks of iterations. The size of the block starts large and shrinks 
down to size “chunk” as the calculation proceeds.

– schedule(runtime)
– Schedule  and chunk size taken from the OMP_SCHEDULE environment variable (or the 

runtime library) … vary schedule without a recompile!
– Schedule(auto)

– Schedule is left up to the runtime to choose (does not have to be any of the above).

OpenMP 4.5 added modifiers monotonic, nonmontonic and simd.  
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Schedule Clause When To Use

STATIC Pre-determined and predictable by the 
programmer

DYNAMIC Unpredictable, highly variable work per 
iteration

GUIDED Special case of dynamic to reduce 
scheduling overhead

AUTO When the runtime can “learn” from 
previous executions of the same loop

Loop Worksharing Constructs:  The schedule clause

Least work at 
runtime : 
scheduling done 
at compile-time

Most work at 
runtime : 
complex 
scheduling logic 
used at run-time



#pragma omp parallel for collapse(2)
for (int i=0; i<N; i++) {
for (int j=0; j<M; j++) {

.....
} 

}
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Nested Loops

• Will form a single loop of length NxM and then parallelize that.
• Useful if N is O(no. of threads) so parallelizing the outer loop makes 

balancing the load difficult.

Number of loops 
to be 
parallelized, 
counting from 
the outside

• For perfectly nested rectangular loops we can parallelize multiple loops 
in the nest with the collapse clause: 
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Sections Worksharing Construct
• The Sections worksharing construct gives a different structured block to each thread.  

#pragma omp parallel
{

#pragma omp sections
{
#pragma omp section

x_calculation();
#pragma omp section

y_calculation();
#pragma omp section

z_calculation();
}

}

By default, there is a barrier at the end of the “omp sections”.  Use the “nowait” clause to turn off the barrier.



Array Sections with Reduce
#include <stdio.h> 
#define N 100 
void init(int n, float (*b)[N]); 
int main(){ 
int i,j; float a[N], b[N][N]; init(N,b); 
for(i=0; i<N; i++) a[i]=0.0e0; 

#pragma omp parallel for reduction(+:a[0:N]) private(j) 
for(i=0; i<N; i++){ 

for(j=0; j<N; j++){ 
a[j] += b[i][j]; 

} 
} 
printf(" a[0] a[N-1]: %f %f\n", a[0], a[N-1]); 
return 0; 
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Works the same as any other reduce … a 
private array is formed for each thread, 
element wise combination across threads 
and then with original array at the end



Exercise
• Go back to your parallel mandel.c program.
• Using what we’ve learned in this block of slides can you improve the runtime?
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Optimizing mandel.c
wtime = omp_get_wtime();

#pragma omp parallel for collapse(2) schedule(runtime) firstprivate(eps) private(j,c)
for (i=0; i<NPOINTS; i++) {
for (j=0; j<NPOINTS; j++) {
c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;
testpoint(c);

}
}
wtime = omp_get_wtime() - wtime;
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$ export OMP_SCHEDULE=“dynamic,100”
$ ./mandel_par

default schedule 0.48 secs
schedule(dynamic,100) 0.39 secs
collapse(2) schedule(dynamic,100) 0.34 secs

Four threads on a dual core Apple laptop (Macbook air … 2.2 Ghz Intel Core i7 with 8 GB memory) 
and the gcc version 9.1.  Times are the minimum time from three runs   
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Synchronization

• High level synchronization included in the common core:
–critical
–barrier

• Other, more advanced, synchronization operations:
–atomic
–ordered
– flush
– locks (both simple and nested)

4)2,&(+215"%1+2$1*$-*'#$%+$1.6+*'$+(#'($,+2*%("12%*$
J'%K''2$%&('"#*$"2#$%+$6(+%',%$",,'**$%+$*&"('#$#"%"

Covered in this section

Covered earlier
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Synchronization: Atomic

• Atomic provides mutual exclusion but only applies to the update of a memory 
location (the update of X in the following example)

#pragma omp parallel

{ 
double tmp, B;

B =  DOIT();

#pragma omp atomic 
X += big_ugly(B);

}

#pragma omp parallel

{ 
double B; 

B =  DOIT();

#pragma omp atomic 
X +=  big_ugly(B);

}
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Synchronization: Atomic

• Atomic provides mutual exclusion but only applies to the update of a 
memory location (the update of X in the following example)

#pragma omp parallel

{ 
double B, tmp;

B =  DOIT();

tmp = big_ugly(B);

#pragma omp atomic 
X +=  tmp;

}

D%+.1,$+20)$6(+%',%*$%&'$
('"#L-6#"%'$+3$M



The OpenMP 3.1 Atomics (1 of 2)
• Atomic was expanded to cover the full range of common scenarios where you need to protect a 

memory operation so it occurs atomically:
# pragma omp atomic [read | write | update | capture]
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• Atomic can protect loads
# pragma omp atomic read

v = x; 

• Atomic can protect stores
# pragma omp atomic write

x = expr; 

• Atomic can protect updates to a storage location (this is the default behavior … i.e. when you don’t 
provide a clause)

# pragma omp atomic update
x++;  or ++x;  or x--;  or –x;  or 
x binop= expr; or x = x binop expr;

This is the 
original OpenMP

atomic



The OpenMP 3.1 Atomics (2 of 2)
• Atomic can protect the assignment of a value (its capture) AND an associated update operation:

# pragma omp atomic capture
statement or structured block
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• Where the statement is one of the following forms:
v = x++;       v = ++x;        v = x--;       v =  –x;       v = x binop expr;

• Where the structured block is one of the following forms:

{v = x;  x binop = expr;} {x  binop = expr;     v = x;}
{v=x;    x=x binop expr;} {X = x binop expr;   v = x;}
{v = x;   x++;} {v=x;     ++x:}
{++x;     v=x:} {x++;      v = x;}
{v = x;    x--;} {v= x;     --x;}
{--x;        v = x;} {x--;        v = x;}

The capture semantics in atomic were added to map onto common hardware 
supported atomic operations and to support modern lock free algorithms
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Synchronization: Lock Routines
• Simple Lock routines:

– A simple lock is available if it is unset.
– omp_init_lock(), omp_set_lock(), 

omp_unset_lock(), omp_test_lock(), omp_destroy_lock()

• Nested Locks
– A nested lock is available if it is unset or if it is set but owned by the thread 

executing the nested lock function
– omp_init_nest_lock(), omp_set_nest_lock(), omp_unset_nest_lock(), 

omp_test_nest_lock(), omp_destroy_nest_lock()

Note: a thread always accesses the most recent copy of the lock, 
so you don’t need to use a flush on the lock variable.

D$0+,N$1.601'*$"$.'.+()$
3'2,'$:"$“30-*&”B$+3$"00$
%&('"#$/1*1J0'$/"(1"J0'*

Locks with hints were added in OpenMP 4.5 to suggest a lock strategy based on 
intended use (e.g. contended, uncontended, speculative, unspeculative) 



int i, ix, even_count = 0, odd_count = 0;
omp_lock_t odd_lck,   even_lck;
omp_init_lock(&odd_lck);
omp_init_lock(&even_lck);

#pragma omp parallel for private(ix) shared(even_count, odd_count)
for(i=0; i<N; i++){

ix = (int) x[i]; //truncate to int

if(((int) x[i])%2 == 0) { 
omp_set_lock(&even_lck);

even_count++;
omp_unset_lock(&even_lck);

}
else{ 

omp_set_lock(&odd_lck);
odd_count++;

omp_unset_lock(&odd_lck);
}

}
omp_destroy_lock(&odd_lck);
omp_destroy_lock(&even_lck);

}
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Synchronization: Simple Locks Example
• Count odds and evens in an input array(x)  of N random values.

Free-up storage when done.

One lock per case … even and odd

Enforce mutual exclusion updates, 
but in parallel for each case.



Exercise
• In the file hist.c, we provide a program that generates a large array of random numbers 

and then generates a histogram of values.

• This is a ”quick and informal” way to test a random number generator … if all goes well 
the bins of the histogram should be the same size.

• Parallelize the filling of the histogram  You must assure that your program is race free 
and gets the same result as the sequential program. 

• Using everything we’ve covered today, manage updates to shared data in two different 
ways.  Try to minimize the time to generate the histogram.  

• Time ONLY the assignment to the histogram.    Can you beat the sequential time?
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Histogram Program: Critical section

• A critical section means that only one thread at a time can update a histogram bin … 
but this effectively serializes the loops and adds huge overhead as the runtime 
manages all the threads waiting for their turn for the update.

#pragma omp parallel for
for(i=0;i<NVALS;i++){

ival = (int)  x[i];
#pragma omp critical   

hist[ival]++;
}

Easy to write and 
correct, but terrible 
performance
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Histogram program: one lock per histogram bin
• Example: conflicts are rare, but to play it safe, we must assure mutual exclusion for 

updates to histogram elements.

#pragma omp parallel for
for(i=0;i<NBUCKETS; i++){

omp_init_lock(&hist_locks[i]);    hist[i] = 0;
}
#pragma omp parallel for
for(i=0;i<NVALS;i++){

ival = (int)  x[i];
omp_set_lock(&hist_locks[ival]);   

hist[ival]++;
omp_unset_lock(&hist_locks[ival]);

}

#pragma omp parallel for
for(i=0;i<NBUCKETS; i++)
omp_destroy_lock(&hist_locks[i]); Free-up storage when done.

One lock per element of hist

Enforce mutual 
exclusion on update 
to hist array
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Histogram program: reduction with an array

• We can give each thread a copy of the histogram, they can fill them in parallel, and 
then combine them when done

#pragma omp parallel for reduction(+:hist[0:Nbins])
for(i=0;i<NVALS;i++){

ival = (int)  x[i];
hist[ival]++;

}
Easy to write and correct, Uses a lot of 
memory on the stack, but its fast … 
sometimes faster than the serial method.   

sequential 0.0019 secs
critical 0.079 secs
Locks per bin 0.029 secs
Reduction, replicated histogram array 0.00097 secs

1000000 random values in X sorted into 50 bins. Four threads on a dual core Apple laptop 
(Macbook air … 2.2 Ghz Intel Core i7 with 8 GB memory) and the gcc version 9.1.   Times are 
for the above loop only (we do not time set-up for locks, destruction of locks or anything else)
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Sometimes when working with multiple interacting locks, you have 
to pay attention to the locking orders

Lock Example from Gafort (SpecOMP’2001)

• Genetic algorithm in Fortran
• Most “interesting” loop: shuffle the population.

– Original loop is not parallel; performs pair-wise swap of an array element with 
another, randomly selected element. There are 40,000 elements.

– Parallelization idea: 
– Perform the swaps in parallel
– Need to prevent simultaneous access to same array element: use one lock per array 

element   à 40,000 locks.
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!$OMP PARALLEL PRIVATE(rand, iother, itemp, temp, my_cpu_id) 
my_cpu_id = 1

!$   my_cpu_id = omp_get_thread_num() + 1
!$OMP DO

DO j=1,npopsiz-1
CALL ran3(1,rand,my_cpu_id,0)
iother=j+1+DINT(DBLE(npopsiz-j)*rand)

!$      IF (j < iother) THEN
!$         CALL omp_set_lock(lck(j))
!$         CALL omp_set_lock(lck(iother))
!$      ELSE
!$         CALL omp_set_lock(lck(iother))
!$         CALL omp_set_lock(lck(j))
!$      END IF

itemp(1:nchrome)=iparent(1:nchrome,iother)
iparent(1:nchrome,iother)=iparent(1:nchrome,j)
iparent(1:nchrome,j)=itemp(1:nchrome)
temp=fitness(iother)
fitness(iother)=fitness(j)
fitness(j)=temp

!$     IF (j < iother) THEN
!$         CALL omp_unset_lock(lck(iother))
!$         CALL omp_unset_lock(lck(j))
!$     ELSE
!$         CALL omp_unset_lock(lck(j))
!$         CALL omp_unset_lock(lck(iother))
!$     END IF

END DO
!$OMP END DO
!$OMP END PARALLEL

Parallel Loop
In shuffle.f
of Gafort

Exclusive access 
to array 
elements.

Ordered locking 
prevents 
deadlock.
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Data Sharing: Threadprivate

• Makes global data private to a thread
– Fortran: COMMON blocks
– C: File scope and static variables, static class members

• Different from making them PRIVATE
– with PRIVATE global variables are masked. 
– THREADPRIVATE preserves global scope within each thread

• Threadprivate variables can be initialized using COPYIN or at time of definition 
(using language-defined initialization capabilities)
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A Threadprivate Example (C)

int counter = 0;
#pragma omp threadprivate(counter)

int increment_counter()
{

counter++;
return (counter);

}

Use threadprivate to create a counter for each thread.
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Data Copying: Copyin

parameter (N=1000)
common/buf/A(N)

!$OMP THREADPRIVATE(/buf/)

!$ Initialize the A array
call init_data(N,A)

!$OMP PARALLEL COPYIN(A)

… Now each thread sees threadprivate array A initialized 
… to the global value set in the subroutine init_data()

!$OMP END PARALLEL

end

You initialize threadprivate data using a copyin clause. 
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Exercise: Monte Carlo Calculations 
Using random numbers to solve tough problems

• Sample a problem domain to estimate areas, compute probabilities, find optimal 
values, etc.

• Example: Computing π with a digital dart board:

l Throw darts at the circle/square.
l Chance of falling in circle is proportional to 

ratio of areas:
Ac = r2 * π
As = (2*r) * (2*r)  = 4 * r2

P = Ac/As =  π /4
l Compute π by randomly choosing points; π is 

four times the fraction that falls in the circle

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000    π = 3.148
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Exercise: Monte Carlo pi (cont)

• We provide three files for this exercise
– pi_mc.c: the Monte Carlo method pi program
– random.c: a simple random number generator
– random.h: include file for random number generator

• Create a parallel version of this program.
• Run it multiple times with varying numbers of threads.
• Is the program working correctly?   Is there anything wrong?
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Parallel Programmers love Monte Carlo algorithms

#include “omp.h”
static long num_trials = 10000;
int main ()
{

long i;      long Ncirc = 0;       double pi, x, y;
double r = 1.0;   // radius of circle. Side of squrare is 2*r 
seed(0,-r, r);  // The circle and square are centered at the origin
#pragma omp parallel for private (x, y) reduction (+:Ncirc)
for(i=0;i<num_trials; i++)
{

x = random();         y = random();
if ( x*x + y*y) <= r*r)   Ncirc++;

}

pi = 4.0 * ((double)Ncirc/(double)num_trials);
printf("\n %d trials, pi is %f \n",num_trials, pi);

}

Embarrassingly parallel: the 
parallelism is so easy its 
embarrassing.

Add two lines and you have a 
parallel program.
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Random Numbers: Linear Congruential Generator (LCG)
• LCG: Easy to write, cheap to compute, portable, OK quality

l If you pick the multiplier and addend correctly, LCG has a period of PMOD.
l Picking good LCG parameters is complicated, so look it up (Numerical Recipes is 

a good source).  I used the following:
u MULTIPLIER = 1366
u ADDEND = 150889
u PMOD = 714025

random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD;
random_last = random_next;
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LCG code

static long MULTIPLIER  = 1366;
static long ADDEND      = 150889;
static long PMOD        = 714025;
long random_last = 0;
double random ()
{

long random_next;

random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD;
random_last = random_next;

return ((double)random_next/(double)PMOD);
}

Seed the pseudo random 
sequence by setting 
random_last
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Running the PI_MC program with LCG generator

0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

LCG - one thread

LCG, 4 threads,
trail 1
LCG 4 threads,
trial 2
LCG, 4 threads,
trial 3

Log 10 R
elative error

Log10 number of samples

Run the same 
program the 
same way and 
get different 
answers!  

That is not 
acceptable!

Issue: my LCG 
generator is not 
threadsafe

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core laptop (Intel 
T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP.
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Exercise: Monte Carlo pi (cont)

• Create a threadsafe version of the monte carlo pi program

• Do not change the interfaces to functions in random.c
– This is an exercise in modular software … why should a user of your parallel random number 

generator have to know any details of the generator or make any changes to how the generator 
is called?

– The random number generator must be thread-safe

• Verify that the program is thread safe by running multiple times for a fixed number 
of threads.

• Any concerns with the program behavior?
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LCG code: threadsafe version

static long MULTIPLIER  = 1366;
static long ADDEND      = 150889;
static long PMOD        = 714025;
long random_last = 0;
#pragma omp threadprivate(random_last)
double random ()
{

long random_next;

random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD;
random_last = random_next;

return ((double)random_next/(double)PMOD);
}

random_last carries state between 
random number computations,

To make the generator threadsafe, 
make random_last threadprivate so 
each thread has its own copy.
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Thread Safe Random Number Generators

Log
10 R

elative error

Log10 number of samples

Thread safe version gives the 
same answer each time you 
run the program.

But for large number of 
samples, its quality is lower 
than the one thread result!

Why?

0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6 LCG - one

thread
LCG 4 threads,
trial 1
LCT 4 threads,
trial 2
LCG 4 threads,
trial 3
LCG 4 threads,
thread safe
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Pseudo Random Sequences
• Random number Generators (RNGs) define a sequence of pseudo-random numbers of length 

equal to the period of the RNG

l In a typical problem, you grab a subsequence of the RNG range

Seed determines starting point

l Grab arbitrary seeds and you may generate overlapping sequences  
u E.g. three sequences … last one wraps at the end of the RNG period.

l Overlapping sequences = over-sampling and bad statistics … lower quality or even wrong answers!

Thread 1
Thread 2

Thread 3
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Parallel random number generators
• Multiple threads cooperate to generate and use random numbers.
• Solutions:

– Replicate and Pray
– Give each thread a separate, independent generator
– Have one thread generate all the numbers.
– Leapfrog … deal out sequence values “round robin” as if dealing a 

deck of cards.
– Block method … pick your seed so each threads gets a distinct 

contiguous block.

• Other than “replicate and pray”, these are difficult to implement.  Be 
smart … get a math library that does it right.

If done right, can 
generate the 
same sequence 
regardless of the 
number of 
threads …

Nice for 
debugging, but 
not really needed 
scientifically.

Intel’s Math kernel Library supports a wide range of 
parallel random number generators.

For an open alternative, the state of the art is the Scalable Parallel 
Random Number Generators Library (SPRNG): http://www.sprng.org/

from Michael Mascagni’s group at Florida State University.

http://www.sprng.org/
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MKL Random Number Generators (RNG)

#define BLOCK 100
double  buff[BLOCK]; 
VSLStreamStatePtr stream;

vslNewStream(&ran_stream, VSL_BRNG_WH, (int)seed_val); 

vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream, 
BLOCK, buff, low, hi)

vslDeleteStream( &stream );

l MKL includes several families of RNGs in its vector statistics library.
l Specialized to efficiently generate vectors of random numbers

Initialize a 
stream or 
pseudo 
random 
numbers

Select type of RNG 
and set seed

Fill buff with BLOCK pseudo rand.  
nums, uniformly distributed with values 
between lo and hi.

Delete the stream when you are done
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Wichmann-Hill Generators (WH)

• WH is a family of 273 parameter sets each defining a non-overlapping and 
independent RNG.

• Easy to use, just make each stream threadprivate and initiate RNG stream so each 
thread gets a unique WG RNG. 

VSLStreamStatePtr stream;

#pragma omp threadprivate(stream)

…

vslNewStream(&ran_stream, VSL_BRNG_WH+Thrd_ID, (int)seed);
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Independent Generator for each thread

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

WH one
thread
WH, 2
threads
WH, 4
threads

Log
10 R

elative error

Log10 number of samples
Notice that once 
you get beyond 
the high error, 
small sample 
count range, 
adding threads 
doesn’t 
decrease quality 
of random 
sampling.
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Leap Frog Method
• Interleave samples in the sequence of pseudo random numbers:

– Thread i starts at the ith number in the sequence
– Stride through sequence, stride length = number of threads.

• Result … the same sequence of values regardless of the number of threads.
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Same sequence with many threads.
• We can use the leapfrog method to generate the same 

answer for any number of threads

Steps One thread 2 threads 4 threads

1000 3.156 3.156 3.156

10000 3.1168 3.1168 3.1168

100000 3.13964 3.13964 3.13964

1000000 3.140348 3.140348 3.140348

10000000 3.141658 3.141658 3.141658

Used the MKL library with two generator streams per computation: one for the x values (WH) and one for the 
y values (WH+1).  Also used the leapfrog method to deal out iterations among threads.



162

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory models and point-to-point Synchronization
– Programming your GPU with OpenMP



163

OpenMP Memory Model
l OpenMP supports a shared memory model
l All threads share an address space, where variable can be stored or retrieved: 

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

l Threads maintain their own temporary view of memory as well … the details of which are not 
defined in OpenMP but this temporary view typically resides in caches, registers, write-buffers, etc.

a

a

.*.*.
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Flush Operation
• Defines a sequence point at which a thread enforces a consistent view of 

memory.

• For variables visible to other threads and associated with the flush 
operation (the flush-set) 
– The compiler can’t move loads/stores of the flush-set around a flush:
– All previous read/writes of the flush-set  by this thread have completed 
– No subsequent read/writes of the flush-set by this thread have occurred

– Variables in the flush set are moved from temporary storage to shared memory.
– Reads of variables in the flush set following the flush are loaded from shared 

memory.

IMPORTANT POINT: The flush makes the calling threads temporary view match the 
view in shared memory.  Flush by itself does not force synchronization.
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Memory Consistency: Flush Example

l Flush forces data to be updated in memory so other threads see the most 
recent value

double A;

A = compute();

#pragma omp flush(A)

// flush to memory to make sure other
//  threads can pick up the right value  

Note: OpenMP’s flush is analogous to a fence in other shared memory APIs

Flush without a list: flush set is all 
thread visible variables

Flush with a list: flush set is the list of 
variables
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Flush and Synchronization

• A flush operation is implied by OpenMP synchronizations, e.g.,
– at entry/exit of parallel regions
– at implicit and explicit barriers
– at entry/exit of critical regions
– whenever a lock is set or unset
….
(but not at entry to worksharing regions or entry/exit of primary* regions) 

*the term “master” has been deprecated in OpenMP 5.1 and replaced with the term “primary”.    
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Example: prod_cons.c

int main()
{
double *A, sum, runtime;     int flag = 0;

A = (double *) malloc(N*sizeof(double));

runtime = omp_get_wtime();

fill_rand(N, A);        // Producer: fill an array of data

sum = Sum_array(N, A);  // Consumer: sum the array

runtime = omp_get_wtime() - runtime;

printf(" In %lf secs, The sum is %lf \n",runtime,sum);
}

• Parallelize a producer/consumer program
– One thread produces values that another thread consumes.

– The key is to 
implement 
pairwise 
synchronization 
between threads

– Often used with a 
stream of 
produced values 
to implement 
“pipeline 
parallelism”
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Pairwise Synchronization in OpenMP

• OpenMP lacks synchronization constructs that work between pairs of threads.
• When needed, you have to build it yourself.
• Pairwise synchronization

– Use a shared flag variable
– Reader spins waiting for the new flag value
– Use flushes to force updates to and from memory
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Exercise: Producer/Consumer
int main()
{

double *A, sum, runtime; int numthreads, flag = 0;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{

fill_rand(N, A);

flag = 1;

}
#pragma omp section
{

while (flag == 0){

}

sum = Sum_array(N, A);
}

}
}

&+4'45#'-*+05#0'($'45#'6(B54'"*2)#0'41'
/29#'45(0'"61B62/'62)#g-6##@
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Solution (try 1): Producer/Consumer
int main()
{

double *A, sum, runtime; int numthreads, flag = 0;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{

fill_rand(N, A);
#pragma omp flush
flag = 1;
#pragma omp flush (flag)

}
#pragma omp section
{

#pragma omp flush (flag)
while (flag == 0){

#pragma omp flush (flag)
}
#pragma omp flush 
sum = Sum_array(N, A);

}
}

}
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This program works with the x86 memory model (loads and stores use relaxed 
atomics), but it technically has a race … on the store and later load of flag 



The OpenMP 3.1 Atomics (1 of 2)
• Atomic was expanded to cover the full range of common scenarios where you need 

to protect a memory operation so it occurs atomically:
# pragma omp atomic [read | write | update | capture]
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• Atomic can protect loads
# pragma omp atomic read

v = x; 

• Atomic can protect stores
# pragma omp atomic write

x = expr; 

• Atomic can protect updates to a storage location (this is the default 
behavior … i.e. when you don’t provide a clause)

# pragma omp atomic update
x++;  or ++x;  or x--;  or –x;  or 
x binop= expr; or x = x binop expr;

This is the 
original OpenMP

atomic



The OpenMP 3.1 Atomics (2 of 2)
• Atomic can protect the assignment of a value (its capture) AND an associated 

update operation:
# pragma omp atomic capture

statement or structured block
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• Where the statement is one of the following forms:
v = x++;       v = ++x;        v = x--;       v =  –x;       v = x binop expr;

• Where the structured block is one of the following forms:

{v = x;  x binop = expr;} {x  binop = expr;     v = x;}
{v=x;    x=x binop expr;} {X = x binop expr;   v = x;}
{v = x;   x++;} {v=x;     ++x:}
{++x;     v=x:} {x++;      v = x;}
{v = x;    x--;} {v= x;     --x;}
{--x;        v = x;} {x--;        v = x;}

The capture semantics in atomic were added to map onto common hardware 
supported atomic operations and to support modern lock free algorithms



Atomics and Synchronization Flags
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int main()
{ double *A, sum, runtime;

int numthreads, flag = 0, flg_tmp;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{  fill_rand(N, A);

#pragma omp flush
#pragma omp atomic write

flag = 1;
#pragma omp flush (flag)

}
#pragma omp section
{  while (1){

#pragma omp flush(flag) 
#pragma omp atomic read

flg_tmp= flag; 
if (flg_tmp==1) break;

}
#pragma omp flush
sum = Sum_array(N, A);

}
}

}

This program is truly race 
free … the reads and 
writes of flag are 
protected so the two 
threads cannot conflict 

Still painful and error 
prone due to all of the 
flushes that are required 



OpenMP 4.0 Atomic: Sequential consistency

• Sequential consistency:
– The order of loads and stores in a race-free program appear in some interleaved order and 

all threads in the team see this same order.
• OpenMP 4.0 added an optional clause to atomics

– #pragma omp atomic [read | write | update | capture] [seq_cst]
• In more pragmatic terms:

– If the seq_cst clause is included, OpenMP adds a flush without an argument list to the 
atomic operation so you don’t need to.

• In terms of the C++’11 memory model:
– Use of the seq_cst clause makes atomics follow the sequentially consistent memory order.
– Leaving off the seq_cst clause makes the atomics relaxed.
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4.0

Advice to programmers: save yourself a world of hurt … let OpenMP take 
care of your flushes for you whenever possible … use seq_cst



Atomics and Synchronization Flags (4.0)
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int main()
{ double *A, sum, runtime;

int numthreads, flag = 0, flg_tmp;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{  fill_rand(N, A);

#pragma omp atomic write seq_cst
flag = 1;

}
#pragma omp section
{  while (1){

#pragma omp atomic read seq_cst
flg_tmp= flag; 

if (flg_tmp==1) break;
}

sum = Sum_array(N, A);
}

}
}

This program is truly race 
free … the reads and 
writes of flag are protected 
so the two threads cannot 
conflict – and you do not 
use any explicit flush 
constructs (OpenMP does 
them for you)
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Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory models and point-to-point Synchronization
– Programming your GPU with OpenMP



How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)

177

extern void reduce(   __local  float*,   __global float*);          

__kernel void pi(  const int niters, float  step_size,    
__local  float*  l_sums,  __global float*  p_sums)                 

{                                                          
int n_wrk_items = get_local_size(0);                 
int loc_id = get_local_id(0);     
int grp_id = get_group_id(0);             
float x, accum = 0.0f;    int i,istart,iend;                                      

istart =   (grp_id * n_wrk_items + loc_id) * niters;
iend = istart+niters; 

for(i= istart; i<iend; i++){ 
x = (i+0.5f)*step_size;    accum += 4.0f/(1.0f+x*x); }

l_sums[local_id] = accum;
barrier(CLK_LOCAL_MEM_FENCE);  
reduce(l_sums, p_sums);                  

}

1. Turn source code into a scalar 
work-item

2. Map work-items onto 
an N dim index space. 

4. Run on hardware 
designed around 
the same SIMT 

execution model

3. Map data structures 
onto the same index 

spaceThis is OpenCL kernel code … the sort 
of code the OpenMP compiler generates 

on your behalf

Third Party names are the property of their owners



How do we execute code on a GPU:
OpenCL and CUDA nomenclature
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extern void reduce(   __local  float*,   __global float*);          

__kernel void pi(  const int niters, float  step_size,    
__local  float*  l_sums,  __global float*  p_sums)                 

{                                                          
int n_wrk_items = get_local_size(0);                 
int loc_id = get_local_id(0);     
int grp_id = get_group_id(0);             
float x, accum = 0.0f;    int i,istart,iend;                                      

istart =   (grp_id * n_wrk_items + loc_id) * niters;
iend = istart+niters; 

for(i= istart; i<iend; i++){ 
x = (i+0.5f)*step_size;    accum += 4.0f/(1.0f+x*x); }

l_sums[local_id] = accum;
barrier(CLK_LOCAL_MEM_FENCE);  
reduce(l_sums, p_sums);                  

}

Turn source code into a scalar 
work-item  (a CUDA thread)

Organize work-items into 
work-groups and map onto an an 
N dim index space.  CUDA calls a 

work-group a thread-block

OpenCL index space is 
called an NDRange.

CUDA calls this a GridThis code defines a kernel

Submit a 
kernel to an 
OpenCL 
command 
queue or a 
CUDA stream

Third Party names are the property of their owners

It’s called SIMT, but GPUs are really vector-architectures with a block of work-
items executing together (a subgroup in OpenCL or a warp with CUDA) 



A Generic Host/Device Platform Model

• One Host and one or more Devices
– Each Device is composed of one or more Compute Units
– Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing 
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Third party names are the property of their owners. 179
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OpenMP Basic Definitions: Solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment 
variablesPr

og
. 

La
ye

r

Application

End User

U
se

r l
ay

er

CPU cores SIMD units GPU cores

Shared address space (NUMA)

H
W
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§ Simply add a target construct

–Transfer control of execution to a SINGLE device thread
–Only one team of threads workshares the loop

Host thread

Device initial 
thread

Device
thread
team

#pragma omp target
#pragma omp parallel for  
for (i=0;i<N;i++)

…

Accelerated workshare v1.0
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The target data environment
• Remember: distinct memory spaces on host and device.

• OpenMP uses a combination of implicit and explicit memory movement.

• Data may move between the host and the device in well defined places:
– Firstly, at the beginning and end of a target region:

#pragma omp target
{ // Data may move here

…
} // and here

– We’ll discuss the other places later… 
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Default Data Mapping: 
implicit movement with a target region

• Scalar variables:
– Examples:
– int N; double x;

– OpenMP implicitly maps scalar variables as firstprivate
– A new value per work-item initialized with the original value (in OpenCL nomenclature, the 

firstprivate goes in private memory).

– The variable is not copied back to the host at the end of the target region.

– OpenMP target regions for GPUs execute with CUDA/OpenCL, and a firstprivate
scalar can be launched as a parameter to a kernel function without the overhead of 
setting up a variable in device memory.
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• Non-scalar variables:
– Must have a complete type.

– Example: fixed sized (stack) array:
– double A[1000];

– Copied to the device at the start of the target region, and copied back at the end.  In 
OpenCL nomenclature, these are placed in device global memory.

– A new value is created in the target region and initialized with the original data, but it 
is shared between threads on the device. Data is copied back to the host at the end of 
the target region.

– OpenMP calls this mapping tofrom
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Default Data Mapping: 
implicit movement with a target region



• Pointers and their data:
– Example: arrays allocated on the heap
– double *A = malloc(sizeof(double)*1000);

– The pointer value will be mapped.

– But the data it points to will not be mapped by default.
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Default Data Mapping: 
implicit movement with a target region



The target data environment

Host thread
Generating Task

Initial task

Target task

#pragma omp target
{

target region, 
can use A, B and N

}

Device Initial 
thread

Host thread
waits for the 

task region to 
complete

float A[N], B[N]; A, B and N 
mapped to the 

device

the arrays 
A and B 

mapped back to 
the host

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017

Scalars and statically allocated 
arrays are moved onto the device 

by default before execution

Only the statically allocated arrays 
are moved back to the host after 

the target region completes
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Default Data Sharing: example
int main(void) {

int N = 1024;
double A[N], B[N];

#pragma omp target 
{

for (int ii = 0; ii < N; ++ii) {

A[ii] = A[ii] + B[ii];

}

} // end of target region
}

1. Variables created in host 
memory.

2. Scalar N and stack arrays 
A and B are copied to device 

memory. Execution 
transferred to device.

3. ii is private on the device 
as it’s declared within the 

target region

4. Execution on the device.

5. stack arrays A and B are 
copied from device memory 

back to the host. Host 
resumes execution.
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Explicit Data Sharing

• Previously, we described the rules for implicit data movement.

• We explicitly control the movement of data using the map clause.

• Data allocated on the heap needs to explicitly copied to/from the device:

int main(void) {
int  ii=0, N = 1024;
int* A = malloc(sizeof(int)*N);

#pragma omp target
{
// N, ii and A all exist here
// The data that A points to (*A , A[ii]) DOES NOT exist here!

}
}
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Controlling data movement

• The various forms of the map clause
– map(to:list): On entering the region, variables in the list are initialized on the device using 

the original values from the host (host to device copy).
– map(from:list):  At the end of the target region, the values from variables in the list are 

copied into the original variables (device to host copy). On entering the region, initial value 
of the variable is not initialized.
– map(tofrom:list): the effect of both a map-to and a map-from (host to device copy at start 

of region, device to host copy at end)
– map(alloc:list): On entering the region, data is allocated and uninitialized on the device.
– map(list): equivalent to map(tofrom:list).

• For pointers you must use array section notation ..
– map(to:a[0:N]). Notation is A[lower-bound : length]

int i, a[N], b[N], c[N];
#pragma omp target map(to:a,b) map(tofrom:c)

Data movement 
defined from the 
host perspective.
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Moving arrays with the map clause

int main(void) {
int N = 1024;
int* A = malloc(sizeof(int)*N);

#pragma omp target map(A[0:N])
{
// N, ii and A all exist here
// The data that A points to DOES exist here!

}
}

Default mapping 
map(tofrom: A[0:N])

Copy at start and end of 
target region.
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teams and distribute constructs

• The teams construct
– Similar to the parallel construct
– It starts a league of thread teams
– Each team in the league starts as one initial thread – a team of one
– Threads in different teams cannot synchronize with each other
– The construct must be “perfectly” nested in a target construct

• The distribute construct
– Similar to the for construct
– Loop iterations are workshared across the initial threads in a league
– No implicit barrier at the end of the construct
– dist_schedule(kind[, chunk_size])
– If specified, scheduling kind must be static
– Chunks are distributed in round-robin fashion in chunks of size chunk_size
– If no chunk size specified, chunks are of (almost) equal size; each team receives at least one chunk
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Accelerated workshare v2.0

• teams construct
• distribute construct

• Transfer execution control to MULTIPLE device initial threads
• Workshare loop iterations across the initial threads.

host thread
device initial 

threads

teams

#pragma omp target
#pragma omp teams
#pragma omp distribute
for (i=0;i<N;i++)

…
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Accelerate workshare v3.0
• teams distribute
• parallel for simd

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread 
teams

#pragma omp target
#pragma omp teams distribute
for (i=0;i<N;i++)
#pragma omp parallel for simd
for (j=0;j<M;i++)

…

*the term “master” has been deprecated in OpenMP 5.1 and replaced with the term “primary”.    193



Our host/device Platform Model and OpenMP

Processing 
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Target
construct to 
get onto a 

device

Teams construct to create a 
league of teams with one team of 

threads on each compute unit.

Distribute construct to assign 
blocks of loop iterations to teams.

Parallel for simd
to run each block 
of loop iterations 

on the processing 
elements
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Our host/device Platform Model and OpenMP

Processing 
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Target
construct to 
get onto a 

device

Teams construct to create a 
league of teams with one team of 

threads on each compute unit.

Distribute construct to assign 
blocks of loop iterations to teams.

Parallel for simd
to run each block 
of loop iterations 

on the processing 
elements

Typical usage ... let the compiler do what’s best for the device:

#pragma omp target 
to get on the device

#pragma omp teams distribute parallel for simd
to assign work to the device processing elements
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Our running example: Jacobi solver 

• An iterative method to solve a system of linear equations
– Given a matrix A and a vector b find the vector x such that   Ax=b

• The basic algorithm:
– Write A as a lower triangular (L), upper triangular (U) and diagonal matrix

Ax = (L+D+U)x = b
– Carry out multiplications and rearrange

Dx=b-(L+U)x à x = (b-(L+U)x)/D
– Iteratively compute a new x using the x from the previous iteration

Xnew = (b-(L+U)xold)/D  

• Advantage: we can easily test if the answer is correct by multiplying our 
final x by A and comparing to b

• Disadvantage: It takes many iterations and only works for diagonally 
dominant matrices
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Jacobi Solver

<<< allocate and initialize the matrix A >>>
<<< and vectors x1, x2 and b               >>>

while((conv > TOL) && (iters<MAX_ITERS))
{
iters++;

for (i=0; i<Ndim; i++){
xnew[i] = (TYPE) 0.0;
for (j=0; j<Ndim;j++){

if(i!=j)
xnew[i]+= A[i*Ndim + j]*xold[j];

}
xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}

// test convergence
conv = 0.0;
for (i=0; i<Ndim; i++){

tmp = xnew[i]-xold[i];
conv += tmp*tmp;

}
conv = sqrt((double)conv);

// swap pointers for next
// iteration
TYPE* tmp = xold;
xold = xnew;
xnew = tmp;

} // end while loop

Iteratively update xnew until the value stabilizes (i.e. change less than a preset TOL)
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Jacobi Solver (Par Targ, 1/2)
while((conv > TOL) && (iters<MAX_ITERS))
{
iters++;

#pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
map(to:A[0:Ndim*Ndim], b[0:Ndim])

#pragma omp teams distribute parallel for simd private(i,j)
for (i=0; i<Ndim; i++){

xnew[i] = (TYPE) 0.0;
for (j=0; j<Ndim;j++){

if(i!=j)
xnew[i]+= A[i*Ndim + j]*xold[j];

}
xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}
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Jacobi Solver (Par Targ, 2/2)
//
// test convergence
//
conv = 0.0;

#pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \
map(tofrom:conv)

#pragma omp teams distribute parallel for simd \
private(i,tmp) reduction(+:conv)

for (i=0; i<Ndim; i++){
tmp = xnew[i]-xold[i];
conv += tmp*tmp;

}
conv = sqrt((double)conv);

TYPE* tmp = xold;
xold = xnew;
xnew = tmp;

} // end while loop

This worked but the performance was 
awful.  Why?

System Implementation Ndim = 4096
NVIDA® 
K20X™
GPU

Target dir per 
loop

131.94 secs

Cray® XC40™ Supercomputer running Cray® Compiling Environment 8.5.3. 
Intel® Xeon ® CPU E5-2697 v2 @ 2.70GHz with 32 GB DDR3.  NVIDIA® Tesla® K20X, 6GB.
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Data movement dominates!!!
while((conv > TOLERANCE) && (iters<MAX_ITERS))

{ iters++;
xnew = iters % s ? x2 : x1;
xold = iters % s ? x1 : x2;

#pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
map(to:A[0:Ndim*Ndim], b[0:Ndim] )

#pragma omp teams distribute parallel for simd private(i,j)
for (i=0; i<Ndim; i++){

xnew[i] = (TYPE) 0.0;
for (j=0; j<Ndim;j++){

if(i!=j)
xnew[i]+= A[i*Ndim + j]*xold[j];

}
xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}
// test convergence

conv = 0.0;
#pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \

map(tofrom:conv)
#pragma omp teams distribute parallel for private(i,tmp) reduction(+:conv)
for (i=0; i<Ndim; i++){

tmp = xnew[i]-xold[i];
conv += tmp*tmp;

}
conv = sqrt((double)conv);

}

Typically over 4000 iterations!

For each iteration, copy to device
(3*Ndim+Ndim2)*sizeof(TYPE) bytes

For each iteration, copy from device 
2*Ndim*sizeof(TYPE) bytes 

For each iteration, copy  to 
device 
2*Ndim*sizeof(TYPE) bytes 

200



Target data directive
• The target data construct creates a target data region 

… use map clauses for explicit data management

one or more target 
regions work within the 

target data region

#pragma omp target data map(to:A, B) map(from: C)
{

#pragma omp target
{do lots of stuff with A, B and C}

{do something on the host}

#pragma omp target
{do lots of stuff with A, B, and C}

}

Data is mapped onto the 
device at the beginning of 

the construct

Data is mapped back to 
the host at the end of the 

target data region
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Jacobi Solver (Par Target Data, 1/2)
#pragma omp target data map(tofrom:x1[0:Ndim],x2[0:Ndim]) \

map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
while((conv > TOL) && (iters<MAX_ITERS))

{  iters++;

#pragma omp target 
#pragma omp teams distribute parallel for simd private(j) firstprivate(xnew,xold)

for (i=0; i<Ndim; i++){
xnew[i] = (TYPE) 0.0;
for (j=0; j<Ndim;j++){

if(i!=j)
xnew[i]+= A[i*Ndim + j]*xold[j];

}
xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}
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Jacobi Solver (Par Target Data, 2/2)
// test convergence
conv = 0.0;
#pragma omp target map(tofrom: conv)
#pragma omp teams distribute parallel for simd \

private(tmp) firstprivate(xnew,xold)  reduction(+:conv)
for (i=0; i<Ndim; i++){

tmp = xnew[i]-xold[i];
conv += tmp*tmp;

}
// end target region
conv = sqrt((double)conv);

TYPE* tmp = xold;
xold = xnew;
xnew = tmp;

} // end while loop

System Implementation Ndim = 4096
NVIDA® 
K20X™
GPU

Target dir per loop 131.94 secs
Above plus target 
data region

18.37 secs

Third party names are the property of their owners. 203



Single Instruction Multiple Data

• Individual work-items of a warp start together at the same program 
address

• Each work-item has its own instruction address counter and register 
state
– Each work-item is free to branch and execute independently 
– Supports the SPMD pattern.  

• Branch behavior
– Each branch will be executed serially
– Work-items not following the current branch will be disabled
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A warp

Start Branch1 Branch2 Branch3 Converge

Time



Branching

Conditional execution
// Only evaluate expression
// if condition is met
if (a > b)
{
acc += (a - b*c);

}

Selection and masking
// Always evaluate expression
// and mask result
temp = (a - b*c);
mask = (a > b ? 1.f : 0.f);
acc += (mask * temp);
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Coalescence
• Coalesce - to combine into one
• Coalesced memory accesses are 

key for high bandwidth
• Simply, it means, if thread i

accesses memory location n then 
thread i+1 accesses memory 
location n+1

• In practice, it’s not quite as strict…

for (int id = 0; id < size; id++)
{
// ideal

float val1 = memA[id];

// still pretty good 
const int c = 3;
float val2 = memA[id + c];

// stride size is not so good
float val3 = memA[c*id];

// terrible
const int loc =
some_strange_func(id);

float val4 = memA[loc];
}
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Jacobi Solver (Target Data/branchless/coalesced mem, 1/2)
#pragma omp target data map(tofrom:x1[0:Ndim],x2[0:Ndim]) \

map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
while((conv > TOL) && (iters<MAX_ITERS))

{  iters++;
#pragma omp target  

#pragma omp teams distribute parallel for simd private(j)
for (i=0; i<Ndim; i++){

xnew[i] = (TYPE) 0.0;
for (j=0; j<Ndim;j++){

xnew[i]+= (A[j*Ndim + i]*xold[j])*((TYPE)(i != j));
}
xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}

We replaced the original code with a 
poor memory access pattern

xnew[i]+= (A[i*Ndim + j]*xold[j])
With the more efficient

xnew[i]+= (A[j*Ndim + i]*xold[j])
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//
// test convergence
conv = 0.0;

#pragma omp target map(tofrom: conv)
#pragma omp teams distribute parallel for simd \

private(tmp) reduction(+:conv)
for (i=0; i<Ndim; i++){

tmp = xnew[i]-xold[i];
conv += tmp*tmp;

}
conv = sqrt((double)conv);

TYPE* tmp = xold;
xold = xnew;
xnew = tmp;

} // end while loop

System Implementation Ndim = 4096
NVIDA® 
K20X™
GPU

Target dir per 
loop

131.94 secs

Above plus 
target data 
region

18.37 secs

Above plus 
reduced 
branching

13.74 secs

Above plus 
improved mem 
access

7.64 secs

Jacobi Solver (Target Data/branchless/coalesced mem, 2/2)

Cray® XC40™ Supercomputer running Cray® Compiling Environment 8.5.3. 
Intel® Xeon ® CPU E5-2697 v2 @ 2.70GHz with 32 GB DDR3.  NVIDIA® Tesla® K20X, 6GB. Third party names are the property of their owners. 208


