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Disclaimer
• The views expressed in this talk are those of the speaker and not his 

employer.

• If I say something “smart” or worthwhile:
– Credit goes to the many smart people I work with.

• If I say something stupid…
– It’s my own fault

I work in Intel’s research labs.  I don’t build products.  Instead, 
I get to poke into dark corners and think silly thoughts… just to 

make sure we don’t miss any great ideas.    

Hence, my views are by design far “off the roadmap”.
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The Big “Three”

• In HPC, “three” programming environments dominate … covering the major classes of 
hardware.

1. OpenMP:  Shared memory systems … more recently, GPUs too.

2. MPI:  distributed memory systems … though it works nicely on shared memory 
computers.

3. CUDA, OpenACC, OpenCL, OpenMP/Target, Sycl:  GPU programming

(use CUDA or OpenACC if you don’t mind locking yourself to a single vendor)

• Even if you don’t plan to spend much time programming with these systems … a well rounded 
HPC programmer should know what they are and how they work.
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The Big “Three”

• In HPC, “three” programming environments dominate … covering the major classes of 
hardware.

1. OpenMP:  Shared memory systems … more recently, GPUs too.

2. MPI:  distributed memory systems … though it works nicely on shared memory 
computers.

3. CUDA, OpenACC, OpenCL, OpenMP/Target, Sycl:  GPU programming

(use CUDA or OpenACC if you don’t mind locking yourself to a single vendor)

• Even if you don’t plan to spend much time programming with these systems … a well rounded 
HPC programmer should know what they are and how they work.

These all are 
expressions of 

the same 
execution model 

… so I lump them 
together.



6

The Big “Three”

• In HPC, “three” programming environments dominate … covering the major classes of 
hardware.

1. OpenMP:  Shared memory systems … more recently, GPUs too.

2. MPI:  distributed memory systems … though it works nicely on shared memory 
computers.

3. CUDA, OpenACC, OpenCL, OpenMP/Target, Sycl:  GPU programming

(use CUDA or OpenACC if you don’t mind locking yourself to a single vendor)

• Even if you don’t plan to spend much time programming with these systems … a well rounded 
HPC programmer should know what they are and how they work.

You are all 
OpenMP 

experts and 
know all about 
multithreading
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Parallel API’s: MPI
the Message Passing Interface

omp_set_lock(lck)MPI_Bsend_init

MPI_Pack

MPI_Sendrecv_replace

MPI_Recv_init

MPI_Allgatherv

MPI_Unpac
k 

MPI_Sendrecv

MPI_Bcast

MPI_Ssend

C$OMP ORDERED MPI_Startall

MPI_Test_cancelle
d 

MPI_Type_free

MPI_Type_contiguous

MPI_Barrie
r

MPI_Start

MPI_COMM_WORLD

MPI_Recv

MPI_Send

MPI_Waitall

MPI_Reduce

MPI_Alltoall
v

MPI_Group_compare

MPI_Scan
MPI_Group_size

MPI_Errhandler_creat
e

MPI:  An API for Writing Clustered 
Applications

–A library of routines to coordinate the 
execution of multiple processes. 

–Provides point to point and collective 
communication  in Fortran, C and C++ 

–Unifies last 25 years of  cluster 
computing and MPP practice
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Execution Model:  Distributed memory, CSP*
• Program consists of a collection of named processes.
– Number of processes almost always fixed at program startup time
– Local address space per node -- NO physically shared memory.

• Processes communicate by explicit send/receive pairs
– Coordination is implicit in every communication event.
–MPI (Message Passing Interface) is the most commonly used API

Network

Process P0

Code & Static Data

Memory

Resources

…

S: 12

t: 4200
phi: “foo”

…

Process P1

Code & Static Data

Memory

Resources

…

S: 0x: 42

foo: “bar”

Process Pn

Code & Static Data

Memory

Resources

…

S: 11 y: 23

zz: “tops”
send (P1,s)receive (Pn,s)

S: 11

*CSP: communicating sequential processes
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How do people use MPI?
The SPMD Design Pattern

Replicate the program.

Add glue code

Break up the data

A sequential program 
working on a data set

•A  single program working on a 
decomposed data set.

•Use process ID and numb of processes 
to split up work between processes

• Coordination by passing messages.
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How do people use MPI?
The SPMD Design Pattern

Replicate the program.

Add glue code

Break up the data

A sequential program 
working on a data set

•A  single program working on a 
decomposed data set.

•Use process ID and numb of processes 
to split up work between processes

• Coordination by passing messages.

The collection of 
processes involved in 
a computation is called 
“a process group”

MPI functions work within a “context”:  MPI actions occurring in different 
contexts, even if they share a process group, cannot interfere with each other. 
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MPI Hello World

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );
MPI_Finalize();
return 0;

}
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Initializing and finalizing MPI

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );
MPI_Finalize();
return 0;

}

int MPI_Init (int* argc, char* argv[])
§ Initializes the MPI library … called before any 

other MPI functions.
§ agrc and argv are the command line args passed 

from main()

int MPI_Finalize (void)
§ Frees memory allocated by the MPI library … close 

every MPI program with a call to MPI_Finalize
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How many processes are involved?

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );
MPI_Finalize();
return 0;

}

int MPI_Comm_size (MPI_Comm comm, int* size)
§ MPI_Comm, an opaque data type called a communicator.  Default 

context: MPI_COMM_WORLD (all processes)
§ MPI_Comm_size returns the number of processes in the process 

group associated with the communicator

Communicators consist of 
two parts, a context and a 
process group.  

The communicator lets one 
control how groups of 
messages interact.

Communicators support 
modular SW … i.e. I can 
give a library module its 
own communicator and 
know that it’s messages 
can’t collide with messages 
originating from outside the 
module
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Which process “am I” (the rank)

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );
MPI_Finalize();
return 0;

}

int MPI_Comm_rank (MPI_Comm comm, int* rank)
§ MPI_Comm, an opaque data type, a communicator.  Default context: 

MPI_COMM_WORLD (all processes)
§ MPI_Comm_rank An integer ranging from 0 to “(num of procs)-1”

Note that other than init() 
and finalize(), every MPI 
function has a 
communicator.

This makes sense .. You 
need a context and group 
of processes that the MPI 
functions impact … and 
those come from the 
communicator.
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Running the program

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );
MPI_Finalize();
return 0;

}

§ On a 4 node cluster, I’d run this 
program (hello) as:
> mpiexec –np 4 –hostfile hostf hello

• Where “hostf” is a file with the names of 
the cluster nodes, one to a line.

• What would this program would output?
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Running the program

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );
MPI_Finalize();
return 0;

}

§ On a 4 node cluster, I’d run this 
program (hello) as:
> mpiexec –np 4 –hostfile hostf hello
Hello from process 1 of 4
Hello from process 2 of 4
Hello from process 0 of 4
Hello from process 3 of 4

• Where “hostf” is a file with the names 
of the cluster nodes, one to a line.



17

Bulk Synchronous Programming (BSP):
A common design pattern used with MPI Programs

• Many MPI applications have few (if any) sends and 
receives. They use the following very common pattern:

§ Use the Single Program Multiple Data 
pattern

§ Each process maintains a local view of the 
global data

§ A problem broken down into phases each of 
which is composed of two subphases:

• Compute on local view of data
• Communicate to update global view on 

all processes (collective 
communication).

§ Continue phases until complete

Collective comm.

Collective comm.

P
0

P
3

P
2

P
1Processes

Tim
e

BSP is a subset of the SPMD pattern.



Example Problem:  Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx » p
i = 0

N

Mathematically, we know that:

We can approximate the 
integral as a sum of 
rectangles:

Where each rectangle has 
width Dx and height F(xi) at 
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2 )

4.
0

2.
0

1.
0X0.

0
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PI Program: an example

static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
x = 0.5 * step;

for (i=0;i<= num_steps; i++){
x+=step;
sum += 4.0/(1.0+x*x);

}
pi = step * sum;

}
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Pi program in MPI … using the BSP pattern 
#include <mpi.h>
void main (int argc, char *argv[])
{

int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ;
step = 1.0/(double) num_steps ;
MPI_Init(&argc, &argv) ;
MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
my_steps = num_steps/numprocs ; 

int istart = my_id*my_steps;
int iend = (my_id+1)*my_steps;
if (my_id = numprocs-1) iend = num_steps;

for (i=istarts; i<iend; i++){
x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
sum *= step ; 
MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 
MPI_COMM_WORLD) ;

MPI_finalize();
}

Sum values in “sum” from 
each process and place it 

in “pi” on process 0 
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Reduction
int MPI_Reduce (void* sendbuf,

void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op,
int root, MPI_Comm comm)

• MPI_Reduce performs specified reduction operation on specified data 
from all processes in communicator, places result in process “root” only.

• MPI_Allreduce places result in all processes (avoid unless necessary)

Operation Function
MPI_SUM Summation
MPI_PROD Product
MPI_MIN Minimum value
MPI_MINLOC Minimum value and 

location
MPI_MAX Maximum value
MPI_MAXLOC Maximum value and 

location
MPI_LAND Logical AND

Operation Function
MPI_BAND Bitwise AND
MPI_LOR Logical OR
MPI_BOR Bitwise OR
MPI_LXOR Logical exclusive OR
MPI_BXOR Bitwise exclusive OR
User-defined It is possible to define new 

reduction operations
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Sending and receiving messages
• Pass a buffer which holds “count” values of MPI_TYPE
• The data in a message to send or receive is described by a triple:

– (address, count, datatype)

Address of 
Local  
Buffer

count Datatype

MPI_Send (buff, 100, MPI_DOUBLE, Dest, tag, MPI_COMM_WORLD);

• The receiving process identifies messages with the double :
- (source, tag)

• Where:
- Source is the rank of the sending process
- Tag is a user-defined integer to help the receiver keep track of 

different messages from a single source

Rank of Source node

tag

MPI_Recv (buff, 100, MPI_DOUBLE, Src, tag, MPI_COMM_WORLD, &status);
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Buffers
• Message passing has a small set of primitives, but there are subtleties
– Buffering and deadlock
– Deterministic execution
– Performance 

• When you send data, where does it go?  One possibility is:
Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

Derived from: Bill Gropp, UIUC
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Blocking Send-Receive Timing Diagram 
(MPI functions return when local buffer can be used again)

send side                               receive side

MPI_Send:  T1

T4: MPI_Recv returns

MPI_Send returns T2

Once receive
is called @ T0,
Local buffer unavailable
to user

Local buffer filled and 
available to user

It is important to post the receive before 
sending, for highest performance. 

T0: MPI_Recv

Local 
buffer can
be reused

T3: Transfer Complete

tim
e

tim
e
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buffer unavailable 
to user

Non-Blocking Send-Receive Diagram
(MPI functions return immediately)

send side             receive side

MPI_Isend

T8: MPI_Wait returns

T3 buffer unavailable 
to user

receive buffer 
filled and available 

to the user

T0: MPI_Irecv

T7: transfer finishes

T4: MPI_Wait called

Sender completes

T1: MPI_Irecv Returns

T5

tim
e

tim
e

T2
MPI_Isend returns

T6
T9

MPI_Wait

MPI_Wait returns

buffer available 
to user
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Example: finite difference methods

• Solve the heat diffusion equation in 1 D:
– u(x,t) describes the temperature field
– We set the heat diffusion constant to one
– Boundary conditions, constant u at endpoints.

ihxxi += 0

t
u

x
u

¶
¶

=
¶
¶

2

2

n map onto a mesh with stepsize h and k

n Central difference approximation for 
spatial derivative (at fixed time) 2

11
2

2 2
h

uuu
x
u jjj -+ +-

=
¶
¶

iktti += 0

n Time derivative at t = tn+1
k
uu

dt
du nn -

=
+1
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Example: Explicit finite differences
• Combining time derivative expression using spatial derivative 

at t = tn
2

11
1 2

h
uuu

k
uu n

j
n
j

n
j

n
j

n
j -+
+ +-

=
-

n Solve for u at time n+1 and step j

n The solution at t = tn+1 is determined explicitly from the solution at t = tn
(assume u[t][0] = u[t][N] = Constant for all t).

n
j

n
j

n
j

n
j ruruuru 11
1 )21( +-
+ ++-=

2h
kr =

for (int t = 0; t < N_STEPS-1; ++t)
for (int x = 1; x < N-1; ++x)

u[t+1][x] = u[t][x] + r*(u[t][x+1] - 2*u[t][x] + u[t][x-1]);

n Explicit methods are easy to compute … each point updated based on 
nearest neighbors.  Converges for r<1/2.
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Heat Diffusion equation 

infinitesimally narrow rod (~one D)

“infinite” heat 
bath (fixed 

temperature, 
T2)

“infinite” heat 
bath (fixed 

temperature, 
T1)

T2T1

28
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Heat Diffusion equation 

infinitesimally narrow rod (~one D)

T2T1

Pictorially, you are sliding a three point 
“stencil” across the domain (u) and 
updating the center point at each stop.

29
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Heat Diffusion equation 

int main()
{

double *u   = malloc (sizeof(double) * (N));    
double *up1 = malloc (sizeof(double) * (N));

initialize_data(uk, ukp1, N, P); // init to zero, set end temperatures
for (int t = 0; t < N_STEPS; ++t){

for (int x = 1; x < N-1; ++x)
up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

temp = up1; up1 = u; u = temp;
}

return 0;

T2T1

A well known trick with 2 arrays so I 
don’t overwrite values from step k-1 
as I fill in for step k

Note: I don’t need the 
intermediate “u[t]” values 

hence “u” is just indexed by x.
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Heat Diffusion equation 

int main()
{

double *u   = malloc (sizeof(double) * (N));    
double *up1 = malloc (sizeof(double) * (N));

initialize_data(uk, ukp1, N, P); // init to zero, set end temperatures
for (int t = 0; t < N_STEPS; ++t){

for (int x = 1; x < N-1; ++x)
up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

temp = up1; up1 = u; u = temp;
}

return 0;

T2T1

How would 
you 
parallelize 
this program?
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Heat Diffusion equation 

T2T1

• Start with our original picture of the problem … a one 
dimensional domain with end points set at a fixed 
temperature.
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Heat Diffusion equation 

T2T1

• Break it into chunks assigning one chunk to each process.

P0 P1 P2 P3
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Heat Diffusion equation 

T2T1

• Each process works on it’s own chunk … sliding the stencil 
across the domain to updates its own data.

P0 P1 P2 P3
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Heat Diffusion equation 

T2T1

• What about the ends of each chunk … where the stencil will 
run off the end and hence have missing values for the 
computation?
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Heat Diffusion equation 

T2T1

• We add ghost cells to the ends of each chunk, update them 
with the required values from neighbor chunks at each time 
step … hence giving the stencil everything it needs on any 
given chunk to update all of its values.

Ghost 
cell

Ghost 
cell
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Design Pattern: Geometric Decomposition

• Use when:
– The problem is organized around a central data structure that can be decomposed into 

smaller segments (chunks) that can be updated concurrently.
• Solution

– Typically, the data structure is updated iteratively where a new value for one chunk depends 
on neighboring chunks.

– The computation breaks down into three components: (1) exchange boundary data, (2) 
update the interiors or each chunk, and (3) update boundary regions. The optimal size of the 
chunks is dictated by the properties of the memory hierarchy. 

• Note:
– This pattern is often used with the Structured Mesh and linear algebra computational 

strategy pattern.
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The Geometric Decomposition Pattern

T2T1

Ghost 
cell

Ghost 
cell

§ This is an instance of a very important design pattern … the Geometric 
decomposition pattern.
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Heat Diffusion MPI Example 
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &P);
MPI_Comm_rank (MPI_COMM_WORLD, &myID);
double *u   = malloc (sizeof(double) * (2 + N/P))  // include "Ghost Cells"
double *up1 = malloc (sizeof(double) * (2 + N/P)); // to hold values

// from my neighbors
initialize_data(uk, ukp1, N, P);
for (int t = 0; t < N_STEPS; ++t){

if (myID != 0)  MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD);
if (myID != P-1) MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status);
if (myID != P-1) MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD);
if (myID != 0)   MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status);

for (int x = 2; x <= N/P; ++x)
up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

if (myID != 0)
up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]);  

if (myID != P-1)
up1[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);

temp = up1; up1 = u; u = temp;

} // End of for (int t ...) loop

MPI_Finalize();
return 0;

We write/explain 
this part first and 
then address the 
communication 
and data 
structures
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Heat Diffusion MPI Example 
/* continued from previous slide */

for (int x = 2; x <= N/P; ++x)
up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

if (myID != 0)
up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]);  

if (myID != P-1)
up1[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);

temp = up1; up1 = u; u = temp;

} // End of for (int t ...) loop

MPI_Finalize();
return 0;

Note I was lazy and assume N was evenly 
divided by P.  Clearly, I’d never do this in a 
“real” program.

Temperature fields using local data and 
values from ghost cells.

u[0] and 
u[N/P+1] are the 

ghost cells

We don’t update up1[1] on node 0 or up1[N/P] on node (P-1) since the boundary conditions 
stipulate that the end points have a fixed temperature
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Heat Diffusion MPI Example 
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &P);
MPI_Comm_rank (MPI_COMM_WORLD, &myID);
double *u   = malloc (sizeof(double) * (2 + N/P))  // include "Ghost Cells"
double *up1 = malloc (sizeof(double) * (2 + N/P)); // to hold values

// from my neighbors
initialize_data(uk, ukp1, N, P);
for (int t = 0; t < N_STEPS; ++t){

if (myID != 0)
MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD);

if (myID != P-1)
MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status);

if (myID != P-1)
MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD);

if (myID != 0)
MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status);

/* continued on next slide */

1D PDE solver … the simplest “real” message 
passing code I can think of. Note: edges of 
domain are held at a fixed temperature

Send my “right” boundary value  to my “right’ neighbor

Receive my “left” ghost cell from my “left’ neighbor

Send my “left” boundary value  to my “left’ neighbor

Receive my “right” ghost cell from my “right’ neighbor
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MPI is huge!!!
• MPI has over 430 functions!!!

– Many forms of message passing
– Full range of collectives (such as reduction)
– dynamic process management
– Shared memory
– and much more

• Most programs, however use around a dozen different 
constructs … so it’s not as hard to learn as it may seem.

• MPI_Init
• MPI_Finish
• MPI_Comm_size
• MPI_Comm_rank
• MPI_Wtime

• MPI_Reduce
• MPI_Bcast

• MPI_Send
• MPI_Recv
• MPI_Isend
• MPI_Irecv
• MPI_Wait

Management/tim
e

Message Passing Collective Comm.
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Does a shared address space make 
programming easier?  

Time

Effort

Extra work upfront,  but easier 
optimization and debugging means 

overall, less time to solution
Message passing

Time

Effort

initial parallelization can be 
quite easy 

Multi-threading

But difficult debugging and 
optimization means overall 

project takes longer 

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica,  vol. 35 pp. 321–345, 
2003

Proving that a shared address space program using 
semaphores is race free is an NP-complete problem*



44

The Big “Three”

• In HPC, “three” programming environments dominate … covering the major classes of 
hardware.

1. OpenMP:  Shared memory systems … more recently, GPUs too.

2. MPI:  distributed memory systems … though it works nicely on shared memory 
computers.

3. CUDA, OpenACC, OpenCL, OpenMP/Target, Sycl:  GPU programming

(use CUDA or OpenACC if you don’t mind locking yourself to a single vendor)

• Even if you don’t plan to spend much time programming with these systems … a well rounded 
HPC programmer should know what they are and how they work.

You are all 
OpenMP 

experts and 
know all about 
multithreading You aren’t an 

expert, but 
you now 
hopefully 
grok* MPI

*grok: a Martian word meaning to understand something deeply; to merge with it and for it to merge with you.
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Single Instruction Multiple Thread (SIMT)

• SIMT:  
– Implement data parallel problems:

–Define an abstract index space that spans the problem domain.
–Data structures in the problem are aligned to this index space.
–Run an instance of a kernel at each point in that space.

• This approach was popularized for graphics applications where the index space 
mapped onto the pixels in an image.   Since 2006, It’s been extended to General 
Purpose GPU (GPGPU) programming.

Note: This is closely related the SPMD pattern. 
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The BIG idea behind SIMT
•Execution model … execute an instance of a kernel at each point in a 
problem domain.
–E.g., process a 1024 x 1024 image with one instance of a kernel per 
pixel or 1024 x 1024 = 1,048,576 kernel instances

void
trad_mul(int n, 

const float *a, 
const float *b, 
float *c)

{
int i;
for (i=0; i<n; i++)
c[i] = a[i] + b[i];

}

Traditional loops
kernel void
dp_mul(global const float *a, 

global const float *b, 
global float *c)

{
int id = get_global_id(0);

c[id] = a[id] + b[id];

} // execute over “n” work-items

Data Parallel … OpenCL

Third party names are the property of their owners
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An N-dimensional range of work-items

1024

10
24

Synchronization between 
work-items possible only 

within work-groups:
barriers and memory fences

Cannot synchronize 
between work-groups

within a kernel

Third party names are the property of their owners

• SIMT execution model … execute an instance of a kernel at each point in a problem domain.
–E.g., process a 1024 x 1024 image with one instance of a kernel per pixel or 

1024 x 1024 = 1,048,576 kernel instances
– Global Dimensions: (NDRange)    1024x1024 (whole problem space)
– Local Dimensions:  128x128 (work-group, executes together)
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An N-dimensional grid of threads

1024

10
24

Synchronization between 
threads possible only within 

thread-groups:
barriers and memory fences

Cannot synchronize 
between thread-groups 

within a kernel*

Third party names are the property of their owners *CUDA since 9.X has relaxed this constraint

• SIMT execution model … execute an instance of a kernel at each point in a problem domain.
–E.g., process a 1024 x 1024 image with one instance of a kernel per pixel or 

1024 x 1024 = 1,048,576 kernel instances
– Global Dimensions: (Grid)    1024x1024 (whole problem space)
– Local Dimensions:  128x128 (thread-group, executes together)
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SIMT: Single Instruction, Multiple Thread

• SIMT model: Individual scalar instruction streams are grouped together for SIMD 
execution on hardware

SL0 SL1 SL2 SL3 SL4 SL5 SL6 SL7

ld x
mul a
ld y
add
st y

A stream of 
Scalar 
instructions

NVIDIA calls this set of 
work-items a warp

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y
SIMD execution 

scheduled across a 
fixed number of SIMD 

Lanes (SL)
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Single Instruction Multiple Data

• Individual work-items of a warp start together at the same program address
• Each work-item has its own instruction address counter and register state

– Each work-item is free to branch and execute independently 
– Supports the SPMD pattern.  

• Branch behavior
– Each branch will be executed serially
– Work-items not following the current branch will be disabled

A warp

Start Branch1 Branch2 Branch3 Converge

Time
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GPU Architecture:  

# Frigure from “Programming your GPU with OpenMP”, but Tom Deakin and Tim Mattson, MIT Press, 2022 

A generic GPU with 16 
Streaming Multiprocessors 
each with with 16 SIMD 
Lanes

A modern GPU also has load-store, 
floating point, and tensor processing 
units spread around the SM. They 
are accessed through a fixed API and 
are not directly programmed through 
a GPGPU programing model … 
hence we do not include them here.   
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GPU Architecture: Nvidia Nomenclature

# Frigure from “Programming your GPU with OpenMP”, but Tom Deakin and Tim Mattson, MIT Press, 2022 

• Thread Groups:
– Each Thread Group is scheduled 

onto a Streaming SIMD processor
– Peak efficiency requires multiple 

work groups per Streaming SIMD 
processor

• Warps:
– A thread group is broken down into 

warps that execute together.
– A SIMD instruction acts on a “warp”
– The NVIDIA Warp width is 32 

elements: LOGICAL SIMD width 
(though the device on this page has 
a SIMD width of 16)

• CUDA threads:
– each thread is a SIMD vector lane 

and runs on the processing element 
within a Streaming SIMD processor



GPU terminology is really messed up
1

1

#

# Table from “Programming your GPU with OpenMP”, but Tom Deakin and Tim Mattson, MIT Press, 2022 
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SIMT Programming models
• CUDA:

– Released ~2006.   Made GPGPU programming “mainstream” and continues to drive innovation in SIMT programming.
– Downside: proprietary to NVIDIA

• OpenCL:
– Open Standard for SIMIT programming created by Apple, Intel, NVIDIA, AMD, and others. 1st release in 2009.
– Supports CPUs, GPUs, FPGAs, and DSP chips. The leading cross platform SIMT model.
– Downside: extreme portability means verbose API.  Painfully low level especially for the host-program.

• Sycl:
– C++ abstraction layer implements SIMT model with kernels as lambdas.  Closely aligned with OpenCL.  1st release 2014
– Downside: Cross platform implementations only emerging recently.

• Directive driven programming models: 
– OpenACC: they split from an OpenMP working group to create a competing directive driven API emphasizing descriptive 

(rather than prescriptive) semantics.
– Downside: NOT an Open Standard.   Controlled by NVIDIA.

– OpenMP: Mixes multithreading and SIMT.  Semantics are prescriptive which makes it more verbose.  A truly Open 
standard supported by all the key GPU players.
– Downside: Poor compiler support so far … but that will change over the next couple years.

Third party names are the property of their owners



Vector addition with CUDA

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < N) c[i] = a[i] + b[i];

}

int main () {
int N = ... ;
float *a, *b, *c;
cudaMalloc (&a,  sizeof(float) * N);

// ... allocate other arrays (b and c), fill with data

// Use thread blocks with 256 threads each
vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);

}

55

Unified shared 
memory … allocate 
on host, visible on 

device too

CUDA kernel as 
function

Enqueue the kernel 
to execute on the 

Grid



Vector addition with SYCL

// Compute sum of length-N vectors: C = A + B
#include <CL/sycl.hpp>
constexpr int N = 8;
int main () {

int N = ... ;
float *a, *b, *c;
sycl::queue q;
*a = (float *)sycl::malloc_shared(N * sizeof(float), q);

// ... allocate other arrays (b and c), fill with data

q.parallel_for(sycl::range<1>{N},
[=](sycl::id<1> i) {
c[i] = a[i] + b[i];

});
q.wait();

}
56

Create a queue 
for SYCL 

commands

Unified shared 
memory … allocate 
on host, visible on 

device too

Kernel as a C++ 
Lambda function

[=] means capture external 
variables by value.
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Vector addition with OpenACC
•Let’s add two vectors together …. C = A + B

void vadd(int n, 
const float *a, 
const float *b, 
float *restrict c)

{
int i;

#pragma acc parallel loop
for (i=0; i<n; i++)

c[i] = a[i] + b[i];
}
int main(){
float *a, *b, *c;  int n = 10000;
// allocate and fill a and b

vadd(n, a, b, c);

}

Assure the 
compiler that c 
is not aliased 

with other 
pointers
Turn the loop 
into a kernel, 

move data to a 
device, and 
launch the 

kernel.

Host waits here 
until the kernel 
is done.  Then 

the output array 
c  is copied 

back to the host.
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A more complicated example:
Jacobi iteration: OpenACC (GPU)
#pragma acc data copy(A), create(Anew)
while (err>tol && iter < iter_max){

err = 0.0;
#pragma acc parallel loop reduction(max:err)
for(int j=1; j< n-1; j++){

for(int i=1; i<M-1; i++){
Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+

A[j-1][i] + A[j+1][i]);
err = max(err,abs(Anew[j][i] – A[j][i]));

}
}
#pragma acc parallel loop
for(int j=1; j< n-1; j++){
for(int i=1; i<M-1; i++){

A[j][i] = Anew[j]i];
}

}
iter ++;

}

Create a data region on 
the GPU.  Copy A once 

onto the GPU, and 
create Anew on the 

device (no copy from 
host)

Copy A back out to host 
… but only once

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012
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A more complicated example:
Jacobi iteration: OpenMP target directives
#pragma omp target data map(A) map(alloc:Anew)
while (err>tol && iter < iter_max){

err = 0.0;
#pragma target
#pragma omp teams distribute parallel for reduction(max:err)
for(int j=1; j< n-1; j++){

for(int i=1; i<M-1; i++){
Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+

A[j-1][i] + A[j+1][i]);
err = max(err,abs(Anew[j][i] – A[j][i]));

}
}
#pragma omp target
#pragma omp teams distribute parallel for
for(int j=1; j< n-1; j++){
for(int i=1; i<M-1; i++){

A[j][i] = Anew[j]i];
}

}
iter ++;

}

Create a data 
region on the 
GPU.  Map  A 
and Anew onto 

the target device

Copy A back out to host 
… but only once
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Executing a program on CPUs and GPUs
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Executing a program on CPUs and GPUs
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CPU/GPU execution and the idea of forward progress

For a CPU, the 
threads are all 
active and able 

to make 
forward 

progress.

For a GPU, any 
given work-

group might be 
in the queue 

waiting to 
execute.
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Backup Content 
(or what I’d cover if we had a couple more hours)

• Developing a complex kernel in OpenCL; the dream of performance portability

• The history of General Purpose GPU programming (GPGPU)

• Debunking the 100X GPU vs. CPU Myth
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Industry Standards for Programming Heterogeneous 
Platforms

OpenCL – Open Computing Language
Open, royalty-free standard for portable, parallel programming of 

heterogeneous parallel computing CPUs, GPUs, and other processors

CPUs
Multiple cores driving 
performance increases

GPUs
Increasingly general 

purpose data-parallel 
computing

Graphics 
APIs and 
Shading 

Languages

Multi-
processor 

programming –
e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing
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An N-dimensional domain of work-items
•Global Dimensions:
– 1024x1024 (whole problem space)

• Local Dimensions:
– 128x128 (work-group, executes together)

• Choose the dimensions (1, 2, or 3) that are 
“best” for your algorithm

1024
10

24
Synchronization between 
work-items possible only 

within work-groups:
barriers and memory fences

Cannot synchronize 
between work-groups

within a kernel



OpenCL Memory model

§ Private Memory
– Per work-item

§ Local Memory
– Shared within a

work-group
§ Global Memory /Constant 

Memory
– Visible to all

work-groups
§ Host memory
–On the CPU

Memory management is explicit: 
You are responsible for moving data from

host → global → local and back



Context and Command-Queues

§ Context: 
– The environment within which kernels 

execute and in which synchronization 
and memory management is defined. 

§ The context includes:
–One or more devices
– Device memory 
–One or more command-queues

§ All commands for a device (kernel 
execution, synchronization, and 
memory operations) are submitted 
through a command-queue.  

§ Each command-queue points to a 
single device within a context.

Queue

Context

Device

Device Memory
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Execution model (kernels)

• OpenCL execution model … define a problem domain and 
execute an instance of a kernel for each point in the domain

__kernel void times_two(
__global float* input,
__global float* output)

{
int i = get_global_id(0);
output[i] = 2.0f * input[i];

}

get_global_id(0)
10

Input

Output

0 1 2 3 4 5 6 7 8 9 1
0

1
1 12 1

3 14 1
5 16 1

7
1
8 19 2

0 21 2
2 23 2

4
2
5

0 2 4 6 8 10 1
2 14 1

6 18 2
0

2
2 24 2

6 28 3
0 32 3

4
3
6 38 4

0 42 4
4 46 4

8
5
0



The OpenCL Execution Model
• Host defines a command queue and associates it with a context 

(devices, kernels, memory, etc).
• Host enqueues commands to the command queue

Gy

Gx

(wx, wy)

(wxSx + sx, wySy + sy)
(sx, sy) = (0,0)

(wxSx + sx, wySy + sy)
(sx, sy) = (Sx-1,0)

(wxSx + sx, wySy + sy)
(sx, sy) = (0, Sy-1)

(wxSx + sx, wySy + sy)
(sx, sy) = (Sx-1, Sy- 1)

Index Space Work items execute together as a work-group.

Kernel execution 
commands launch 
work-items: i.e. a 
kernel for each point in 
an abstract Index Space 
called an NDRange

A (Gy by Gx ) 
index space

Third party names are the property of their owners.



OpenCL vs. CUDA Terminology
• Host defines a command queue and associates it with a context 

(devices, kernels, memory, etc).
• Host enqueues commands to the command queue

Gy

Gx

(wx, wy)

(wxSx + sx, wySy + sy)
(sx, sy) = (0,0)

(wxSx + sx, wySy + sy)
(sx, sy) = (Sx-1,0)

(wxSx + sx, wySy + sy)
(sx, sy) = (0, Sy-1)

(wxSx + sx, wySy + sy)
(sx, sy) = (Sx-1, Sy- 1)

Index Space Work items execute together as a work-group.

Kernel execution 
commands launch 
work-items: i.e. a 
kernel for each point in 
an abstract Index Space 
called an NDRange

A (Gy by Gx ) 
index space

CUDA Stream

Grid

Threads
Thread Block

Third party names are the property of their owners.
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Vector Addition - Kernel

__kernel void vec_add (__global const float *a,
__global const float *b, 
__global       float *c)

{
int gid = get_global_id(0);
c[gid] = a[gid] + b[gid];

}
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Vector Addition: Host Program

// create the OpenCL context on a GPU device
cl_context = clCreateContextFromType(0, 

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with 
context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, 
NULL, &cb);

devices = malloc(cb);
clGetContextInfo(context, CL_CONTEXT_DEVICES, cb, 

devices, NULL);

// create a command-queue
cmd_queue = clCreateCommandQueue(context, 

devices[0], 0, NULL);

// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context, 

CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
sizeof(cl_float)*n, srcA, 

NULL);}
memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY 

| CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB, 
NULL);

memobjs[2] = 
clCreateBuffer(context,CL_MEM_WRITE_ONLY, 

sizeof(cl_float)*n, 
NULL,

NULL);
// create the program
program = clCreateProgramWithSource(context, 1, 

&program_source, NULL, NULL);

// build the program
err = clBuildProgram(program, 0, NULL, NULL, NULL, 

NULL);

// create the kernel
kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values
err  = clSetKernelArg(kernel, 0, (void *) &memobjs[0], 

sizeof(cl_mem));
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],

sizeof(cl_mem));
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2], 

sizeof(cl_mem));
// set work-item dimensions
global_work_size[0] = n;

// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, 

NULL, global_work_size, NULL, 0, NULL, NULL);

// read output array
err = clEnqueueReadBuffer(cmd_queue, memobjs[2], 

CL_TRUE, 0, n*sizeof(cl_float), dst, 0, NULL, NULL);
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Vector Addition: Host Program

// create the OpenCL context on a GPU device
cl_context = clCreateContextFromType(0, 

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with 
context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, 
NULL, &cb);

devices = malloc(cb);
clGetContextInfo(context, CL_CONTEXT_DEVICES, cb, 

devices, NULL);

// create a command-queue
cmd_queue = clCreateCommandQueue(context, 

devices[0], 0, NULL);

// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context, 

CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
sizeof(cl_float)*n, srcA, NULL);}

memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY 
| CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB, 
NULL);

memobjs[2] = 
clCreateBuffer(context,CL_MEM_WRITE_ONLY, 

sizeof(cl_float)*n, 
NULL, NULL);

// create the program
program = clCreateProgramWithSource(context, 1, 

&program_source, NULL, NULL);

// build the program
err = clBuildProgram(program, 0, NULL, NULL, NULL, 

NULL);

// create the kernel
kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values
err  = clSetKernelArg(kernel, 0, (void *) &memobjs[0], 

sizeof(cl_mem));
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],

sizeof(cl_mem));
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2], 

sizeof(cl_mem));
// set work-item dimensions
global_work_size[0] = n;

// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, 

NULL, global_work_size, NULL, 0, NULL, NULL);

// read output array
err = clEnqueueReadBuffer(context, memobjs[2], CL_TRUE, 

0, n*sizeof(cl_float), dst, 0, NULL, NULL);

Define platform and queues

Define Memory objects

Create the program

Build  the 
program

Create and setup kernel

Execute the kernel

Read results on the host

It’s complicated, but most of this is “boilerplate” and not as bad as it looks.
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arg [0] 
value

arg [1] 
value

arg [2] 
value

arg [0] 
value

arg [1] 
value

arg [2] 
value

In
Order
Queue

Out of
Order
Queue

GPU

Context

__kernel void
dp_mul(global const float *a,

global const float *b,
global float *c)

{
int id = get_global_id(0);
c[id] = a[id] * b[id];

}

dp_mul
CPU program binary

dp_mul
GPU program binary

Programs Kernels

arg[0] value

arg[1] value

arg[2] value

Images Buffers
In

Order
Queue

Out of
Order
Queue

Compute Device

GPUCPU

dp_mul

Programs Kernels Memory Objects Command Queues

OpenCL summary

Third party names are the property of their owners.
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Whining about performance Portability
• Do we have performance portability today?  

– NO: Even in the “serial world” programs routinely deliver single digit 
efficiencies.

– If the goal is a large fraction of peak performance, you will need to 
specialize code for the platform.

• However there is a pretty darn good performance portable 
language.  It’s called OpenCL
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Matrix multiplication example:
Naïve solution, one dot product per element of C

• Multiplication of two dense matrices.

• To make this fast, you need to break the problem down into chunks that do 
lots of work for sub problems that fit in fast memory (OpenCL local memory).

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C
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Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)
{

int i, j, k;
for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {
for (k = 0; k < N; k++) { 
C[i*N+j] += A[i*N+k] * B[k*N+j];

}
}

}
}



78

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)
{

int i, j, k;
for (i = 0; i < N; i++)  

for (j = 0; j < N; j++)
for (k = 0; k < N; k++)
C[i*N+j] += A[i*N+k] * B[k*N+j];

}

Let’s get rid of all 
those ugly brackets
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Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)
{

int i, j, k;   
float tmp;
int NB=N/block_size; // assume N%block_size=0

for (ib = 0; ib < NB; ib++) 
for (i = ib*NB; i < (ib+1)*NB; i++)

for (jb = 0; jb < NB; jb++) 
for (j = jb*NB; j < (jb+1)*NB; j++)
for (kb = 0; kb < NB; kb++) 

for (k = kb*NB; k < (kb+1)*NB; k++)
C[i*N+j] += A[i*N+k] * B[k*N+j];

}

Break each loop 
into chunks with 
a size chosen to 
match the size of 
your fast memory
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Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)
{

int i, j, k;   
float tmp;
int NB=N/block_size; // assume N%block_size=0

for (ib = 0; ib < NB; ib++) 
for (jb = 0; jb < NB; jb++) 

for (kb = 0; kb < NB; kb++) 

for (i = ib*NB; i < (ib+1)*NB; i++)

for (j = jb*NB; j < (jb+1)*NB; j++)
for (k = kb*NB; k < (kb+1)*NB; k++)

C[i*N+j] += A[i*N+k] * B[k*N+j];
}

Rearrange loop nest 
to move loops over 
blocks “out” and 

leave loops over a 
single block 

together
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Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)
{

int i, j, k;   
float tmp;
int NB=N/block_size; // assume N%block_size=0

for (ib = 0; ib < NB; ib++) 
for (jb = 0; jb < NB; jb++) 

for (kb = 0; kb < NB; kb++) 

for (i = ib*NB; i < (ib+1)*NB; i++)

for (j = jb*NB; j < (jb+1)*NB; j++)
for (k = kb*NB; k < (kb+1)*NB; k++)

C[i*N+j] += A[i*N+k] * B[k*N+j];
}

This is just a local 
matrix multiplication 

of a single block
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Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)
{

int i, j, k;   
int NB=N/block_size; // assume N%block_size=0
for (ib = 0; ib < NB; ib++) 

for (jb = 0; jb < NB; jb++) 
for (kb = 0; kb < NB; kb++) 

sgemm(C, A, B, …)   // Cib,jb = Aib,kb * Bkb,jb

}

Note: sgemm is the name of the level three BLAS routine to multiply two matrices

= x

A(ib,:
)

B(:,jb
)

C(ib,jb
)



Mapping into A, B, and C from each work item

ocl_get_global_ID(0) = 16

oc
l_

ge
t_

gl
ob

al
_I

D(
1)

 =
 1

6

ocl_get_local_ID(0) = 4

ocl_get_local_ID(1) = 4

16 x 16 NDRange with  
workgroups of size 4x4

Map Matrices A, B and C 
onto this NDRange in a 
row major order (N = 16 
and Blksz = 4).  

Understanding 
index offsets in 

the blocked 
matrix 

multiplication 
program.



= x

A(Iblk,:) B(:,Jblk)C(Iblk,Jblk
)

Row Block Column Block
Mapping into A, B, and C from each work item

ocl_get_global_ID(0) = 16

oc
l_

ge
t_

gl
ob

al
_I

D(
1)

 =
 1

6

ocl_get_local_ID(0) = 4

ocl_get_local_ID(1) = 4

16 x 16 NDRange with  
workgroups of size 4x4

Map Matrices A, B and C 
onto this NDRange in a 
row major order (N = 16 
and Blksz = 4).  

Understanding 
index offsets in 

the blocked 
matrix 

multiplication 
program.



16 x 16 NDRange with  
workgroups of size 4x4

Abase = Iblk*N*blksz
= 1 * 16 * 4

Bbase = Jblk*blksz = 
1*4    

Subsequent A blocks 
by shifting index by 
Ainc = blksz = 4

Subsequent B blocks 
by shifting index by 
Binc = blksz * N

= 4 * 16 = 64

Mapping into A, B, and C from each work item

Consider indices for 
computation of the block 
C(Iblk=2, Jblk=1)

Map Matrices A, B and C 
onto this NDRange in a 
row major order (N = 16 
and Blksz = 4).  

= x

A(Iblk,:) B(:,Jblk)C(Iblk,Jblk
)

Row Block Column Block
Understanding 
index offsets in 

the blocked 
matrix 

multiplication 
program.
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Portable performance: dense matrix multiplication

void mat_mul(int N, float *A, float *B, float *C)
{

int i, j, k;   
int NB=N/block_size; // assume N%block_size=0
for (ib = 0; ib < NB; ib++) 

for (jb = 0; jb < NB; jb++) 
for (kb = 0; kb < NB; kb++) 

sgemm(C, A, B, …)   // Cib,jb = Aib,kb * Bkb,jb

}

Note: sgemm is the name of the level three BLAS routine to multiply two matrices

= x

A(ib,:
)

B(:,jb
)

C(ib,jb
) Transform the 

basic serial 
matrix multiply 

into 
multiplication 
over blocks



Blocked matrix multiply: kernel
#define blksz 16
__kernel void mmul(

const unsigned int N,
__global float* A,
__global float* B,
__global float* C,
__local  float* Awrk,
__local  float* Bwrk)

{
int kloc, Kblk;
float Ctmp=0.0f;

//  compute element C(i,j)
int i = get_global_id(0);
int j = get_global_id(1);

// Element C(i,j) is in block C(Iblk,Jblk)
int Iblk = get_group_id(0);
int Jblk = get_group_id(1);

// C(i,j) is element C(iloc, jloc) 
//  of block C(Iblk, Jblk)
int iloc = get_local_id(0);
int jloc = get_local_id(1);
int Num_BLK = N/blksz;

// upper-left-corner and inc for A and B
int Abase = Iblk*N*blksz;   int Ainc = blksz;
int Bbase = Jblk*blksz;      int Binc = blksz*N;

// C(Iblk,Jblk) = (sum over Kblk) 
A(Iblk,Kblk)*B(Kblk,Jblk)
for (Kblk = 0;  Kblk<Num_BLK;  Kblk++)
{   //Load A(Iblk,Kblk) and B(Kblk,Jblk).

//Each work-item loads a single element of the two 
//blocks which are shared with the entire work-

group

Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];
Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

barrier(CLK_LOCAL_MEM_FENCE);

#pragma unroll
for(kloc=0; kloc<blksz; kloc++)

Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

barrier(CLK_LOCAL_MEM_FENCE);

Abase += Ainc;    Bbase += Binc;
}
C[j*N+i] = Ctmp;

}



Blocked matrix multiply: kernel
#define blksz 16
__kernel void mmul(

const unsigned int N,
__global float* A,
__global float* B,
__global float* C,
__local  float* Awrk,
__local  float* Bwrk)

{
int kloc, Kblk;
float Ctmp=0.0f;

//  compute element C(i,j)
int i = get_global_id(0);
int j = get_global_id(1);

// Element C(i,j) is in block C(Iblk,Jblk)
int Iblk = get_group_id(0);
int Jblk = get_group_id(1);

// C(i,j) is element C(iloc, jloc) 
//  of block C(Iblk, Jblk)
int iloc = get_local_id(0);
int jloc = get_local_id(1);
int Num_BLK = N/blksz;

// upper-left-corner and inc for A and B
int Abase = Iblk*N*blksz;   int Ainc = blksz;
int Bbase = Jblk*blksz;      int Binc = blksz*N;

// C(Iblk,Jblk) = (sum over Kblk) 
A(Iblk,Kblk)*B(Kblk,Jblk)
for (Kblk = 0;  Kblk<Num_BLK;  Kblk++)
{   //Load A(Iblk,Kblk) and B(Kblk,Jblk).

//Each work-item loads a single element of the two 
//blocks which are shared with the entire work-

group

Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];
Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

barrier(CLK_LOCAL_MEM_FENCE);

#pragma unroll
for(kloc=0; kloc<blksz; kloc++)

Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

barrier(CLK_LOCAL_MEM_FENCE);

Abase += Ainc;    Bbase += Binc;
}
C[j*N+i] = Ctmp;

}

Load A and B 
blocks, wait for all 
work-items to 
finish

Wait for 
everyone to 
finish before 
going to next 
iteration of 
Kblk loop.

It’s getting the indices 
right that makes this hard
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Matrix multiplication … Portable Performance (in MFLOPS)

Case CPU Xeon Phi Core i7, HD 
Graphics NVIDIA Tesla

Sequential C (compiled 
/O3) 224.4 1221.5 

C(i,j) per work-item, all 
global 841.5 13591 3721

C row per work-item, all 
global 869.1 4418 4196

C row per work-item, A 
row private 1038.4 24403 8584

C row per work-item, A 
private, B local 3984.2 5041 8182

Block oriented approach 
using local (blksz=16) 12271.3 74051 (126322*) 38348 (53687*) 119305

Block oriented approach 
using local (blksz=32) 16268.8

Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel compiler  64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3.

Third party names are the property of their owners.
These  are not official benchmark results.  You may observe completely 
different results should you run these tests on your own system.

Xeon Phi SE10P, CL_CONFIG_MIC_DEVICE_2MB_POOL_INIT_SIZE_MB = 4 MB
* The comp was run twice and only the second time is reported (hides cost of memory movement.

Intel Core i7-4850HQ @ 2.3 GHz which has an Intel HD Graphics 5200 w/ high speed memory. ICC 2013 sp1 update 2.
Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs

• Single Precision matrix multiplication (order 1000 matrices)  



BUDE: Bristol University Docking Engine

One program running well on a wide range of platforms
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Backup Content 
(or what I’d cover if we had a couple more hours)

• Developing a complex kernel in OpenCL; the dream of performance portability

• The history of General Purpose GPU programming (GPGPU)

• Debunking the 100X GPU vs. CPU Myth



Let’s take a deeper look at the GPU:
The vertex pipeline
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Vertex assembly

Primitive assembly

Rasterization

Fragment operations

Display

Vertex operations

Application

Primitive operations

struct {
float x,y,z,w;
float r,g,b,a;

} vertex;

struct {
vertex v0,v1,v2 

} triangle;

struct {
short int x,y;
float depth;
float r,g,b,a;

} fragment;

struct {
int depth;
byte 

r,g,b,a;
} pixel;

Frame buffer

Thanks to Kurt Akeley

Wouldn’t be cool if 
these stages of the 
graphics pipeline 
programmable?
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High-end GPUs have historically been programmable

Silicon Graphics RealityEngine GPU
1993

Intel i860 
RISC CPU

Custom ASIC
for processor
interconnect

• I860 billed as a “Cray-on-a-chip”
0.80 micron technology
2.5M transistors



Programming GPUs

First paper on GPGPU 
programming I could 
find dates to 1995 … 
though the term 
GPGPU didn’t appear 
in the literature until 
~2000.
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The evolutions of the GPU

1st generation: Voodoo 3dfx (1996)

2nd Generation: 
GeForce 256/Radeon 7500 (1998)

3rd  Generation: GeForce3/Radeon 8500 (2001). The first GPU to 
allow a limited programmability in the vertex pipeline.  

4th  Generation: Radeon 9700/GeForce FX (2002): The first 
generation of “fully-programmable” graphics cards.

Third party names are the property of their owners

5th Generation: GeForce 8800/HD2900 (2006) and 
the birth of CUDA
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GPGPU arrives: 2006

Third party names are the property of their owners

• GeForce 8800/HD2900:
– Ground-up GPU redesign
– Support for Direct3D 10 
– Geometry Shaders
– Stream out / transform-feedback
– Unified shader processors

• Support for General GPU 
programming

• Fortunately for NVIDIA, the academic community had been working on 
GPGPU programming for almost a decade.

• Ian Buck at Stanford was wrapping up his dissertation “Stream computing 
on Graphics Hardware” and the language “Brook”.

• He moved over to NVIDIA and led the effort to create CUDA.
• CUDA was extremely influential … Late in 2008 Apple, AMD, Intel, 

NVIDIA, Imagination Technologies and several other companies released  
a vendor-neutral, portable standard for stream computing called OpenCL.

CS194: 
Keutzer/Mattson
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Understanding GPGPU programming: 
SIMD Architecture

• Single Instruction Multiple Data (SIMD)
• Central controller broadcasts instructions to 

multiple processing elements (PEs)
– Only requires one controller for whole array
– Only requires storage for one copy of program
– All computations fully synchronized

Array 
Controller

Inter-PE Connection Network

P
E

M
e
m

P
E

M
e
m

P
E

M
e
m

P
E

M
e
m

P
E

M
e
m

P
E

M
e
m

P
E

M
e
m

P
E

M
e
m

Control
Data

Thinking Machines Corp CM-
200 

(early 90’s).
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Nvidia GPU Architecture

• Nvidia GPUs are a collection of “Streaming Multiprocessors”
– Each SM is analogous to a core of a Multi-Core CPU

• Each SM is a collection of SIMD execution pipelines that share control 
logic, register file, and L1 Cache 
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GPU Platform Model

• The GPUs  are driven by a CPU which …
–Manages the code to execute on the GPUs
–Maintains a queue of kernels to execute
–Manages memory on the GPU and movement between the 

CPU and the GPU

One or More GPUs

……
…

…
……

…
…

……
…

…
……

…

CPU
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Backup Content 
(or what I’d cover if we had a couple more hours)

• Developing a complex kernel in OpenCL; the dream of performance portability

• The history of General Purpose GPU programming (GPGPU)

• Debunking the 100X GPU vs. CPU Myth
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NVIDIA Performance claims
An Nvidia slide from CLSAC’18 talk

“CPU Node”  = 1 AWS Broadwell  Intel® Xeon® E5 vCPU (thread)

16 V100 GPUs connected by NVLink with “hand tuned” CUDA

4 2016 era Intel Xeon® servers running in the cloud 
over ethernet with Spark and “off the shelf” Python.

You gotta watch 
these guys … their 

marketing folks “take 
liberties” with the 

facts
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100X speedups from GPUS: a common myth

Triple digit 
speedups? Really?  
Is this a reasonable 

goal?

Source: a great ESC’15 lecture by a smart person who made a mistake!!!
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A high-level view of performance

•Well optimized applications are either compute or 
bandwidth bounded

• For compute bound applications:
Performance = Arch efficiency * Peak Compute Capability

• For bandwidth bound applications:
Performance = Arch efficiency * Peak Bandwidth Capability

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010 



Reasonable Speedup Expectations

§ Chip A § Chip B

PerfB = EffB * PeakB(Comp or BW)

Speedup B
A
=
PerfB
PerfA

=
EffB
EffA

∗
PeakA (Comp_or _BW )
PeakB (Comp_or _BW )

PerfA = EffA * PeakA(Comp or BW)

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010 



Speedup expectations for well optimized code: 
CPU vs. GPU

Core i7 960
• Four OoO Superscalar Cores, 3.2GHz
• Peak SP Flop: 102GF/s
• Peak BW: 30 GB/s

GTX 280
• 30 SMs (w/ 8 In-order SP each), 1.3GHz
• Peak SP Flop: 933GF/s*
• Peak BW: 141 GB/s

Max Speedup: GTX 280 over Core i7 960

Compute Bound Apps: (SP) 933/102 = 9.1x
Bandwidth Bound Apps: 141/30 = 4.7x

Assuming both Core i7 and GTX280 have the same efficiency:

* 933GF/s assumes mul-add and the use of SFU every cycle on GPU

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010 
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A fair comparison of CPUs and GPUs:
Methodology

– Start with previously best published code / algorithm
– Validate claims by others
– Optimize BOTH CPU and GPU versions
– Collect and analysis performance data

Note: Only computation time on the CPU and GPU is measured.  PCIe transfer time and host 
application time are not measured for GPU.  Including such overhead will lower GPU performance

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010 



What was claimed
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Geomean: 22x

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010 
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What we measured

Geomean on our version: 2.5x

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010 
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Sparse matrix vector product: GPU vs. CPU
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Source: Victor Lee et. al. 
“Debunking the 100X GPU vs. CPU 
Myth”, ISCA 2010 

NVIDIA® GTX 280 GPU vs. an Intel® Core i7 960 CPU

GPU CPU 
Baseline

8 threads 
on 4 
cores

Vectorize Register 
tiling + 

Pipelining

Cache 
Blocking

• [Vazquez09]: reported a 51X speedup for an NVIDIA® GTX295 vs. a Core 
2 Duo E8400 CPU … but they used an old CPU with unoptimized code

• Heavily optimized both the GPU kernels and the CPU code.
• We did not include memory movement onto the GPU … even 

though that would make the CPU look better!

Result: a 2:1 speedup … which makes 
sense given better bandwidth of GDDR5

*third party names are the property of their owners
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Common Mistakes when comparing a CPU and a GPU

• Compare the latest GPU against an old CPU
• Highly optimized GPU code vs. unoptimized CPU code

– I’ve seen numerous papers compare optimized CUDA vs. Matlab or python
• Parallel GPU code vs. serial, unvectorized CPU code.
• Ignore the GPU penalty of moving data across the PCI bus from the CPU to the GPU

GPUs are great and depending on the algorithm can show two to four fold 
speedups.  But not 100+ … that’s just irresponsible and should not be 

tolerated!!


