
11

The Parallel Programming
world beyond OpenMP

Tim Mattson
Intel Corp.

timothy.g.mattson@ intel.com

2

Legal Disclaimer & Optimization Notice

• INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

• Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core, VTune, and Cilk are trademarks of
Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors
for optimizations that are not unique to Intel microprocessors. These optimizations include
SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee
the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

33

Disclaimer
• The views expressed in this talk are those of the speaker and not his

employer.

• If I say something “smart” or worthwhile:
– Credit goes to the many smart people I work with.

• If I say something stupid…
– It’s my own fault

I work in Intel’s research labs. I don’t build products. Instead,
I get to poke into dark corners and think silly thoughts… just to

make sure we don’t miss any great ideas.

Hence, my views are by design far “off the roadmap”.

4

The Big “Three”

• In HPC, “three” programming environments dominate … covering the major classes of
hardware.

1. OpenMP: Shared memory systems … more recently, GPUs too.

2. MPI: distributed memory systems … though it works nicely on shared memory
computers.

3. CUDA, OpenACC, OpenCL, OpenMP/Target, Sycl: GPU programming

(use CUDA or OpenACC if you don’t mind locking yourself to a single vendor)

• Even if you don’t plan to spend much time programming with these systems … a well rounded
HPC programmer should know what they are and how they work.

5

The Big “Three”

• In HPC, “three” programming environments dominate … covering the major classes of
hardware.

1. OpenMP: Shared memory systems … more recently, GPUs too.

2. MPI: distributed memory systems … though it works nicely on shared memory
computers.

3. CUDA, OpenACC, OpenCL, OpenMP/Target, Sycl: GPU programming

(use CUDA or OpenACC if you don’t mind locking yourself to a single vendor)

• Even if you don’t plan to spend much time programming with these systems … a well rounded
HPC programmer should know what they are and how they work.

These all are
expressions of

the same
execution model

… so I lump them
together.

66

A “Hands-on” Introduction to MPI

* The name “MPI” is the property of the MPI forum (http://www.mpi-forum.org).

Tim Mattson Intel Corp. timothy.g.mattson@ intel.com

7

Outline

• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments

8

Execution Model: Distributed memory, CSP*
• Program consists of a collection of named processes.

– Number of processes almost always fixed at program startup time
– Local address space per node -- NO physically shared memory.

• Processes communicate by explicit send/receive pairs
– Coordination is implicit in every communication event.
– MPI (Message Passing Interface) is the most commonly used API

Network

Process P0

Code & Static Data

Memory

Resources

…

S: 12

t: 4200
phi: “foo”

…

Process P1

Code & Static Data

Memory

Resources

…

S: 0x: 42

foo: “bar”

Process Pn

Code & Static Data

Memory

Resources

…

S: 11 y: 23

zz: “tops”
send (P1,s)receive (Pn,s)

S: 11

*CSP: communicating sequential processes

9

Parallel API’s: MPI, the Message Passing Interface

omp_set_lock(lck)MPI_Bsend_init

MPI_Pack

MPI_Sendrecv_replace

MPI_Recv_init

MPI_Allgatherv

MPI_Unpack

MPI_Sendrecv

MPI_Bcast

MPI_Ssend

C$OMP ORDERED MPI_Startall

MPI_Test_cancelled

MPI_Type_free

MPI_Type_contiguous

MPI_Barrier

MPI_Start

MPI_COMM_WORLD

MPI_Recv

MPI_Send

MPI_Waitall

MPI_Reduce

MPI_Alltoallv

MPI_Group_compare

MPI_Scan

MPI_Group_size

MPI_Errhandler_create

MPI: An API for Writing Applications
for Distributed Memory Systems

–A library of routines to coordinate the execution
of multiple processes.
–Provides point to point and collective

communication in Fortran, C and C++
–Unifies last 30 years of cluster computing and

MPP practice

10

How do people use MPI?
The SPMD Design Pattern

Replicate the program.

Add glue code

Break up the data

A sequential program
working on a data set

•A single program working on a
decomposed data set.

•Use Node ID and numb of nodes to
split up work between processes

• Coordination by passing messages.

Running MPI programs

• MPI implementations include a way to start “P processes” on the system.

• For MPIch (the most common MPI implementation), this is done with the
mpiexec command:

> mpiexec –n P ./a.out

• There are many options for mpiexec.

> mpiexec –hostfile hostfile –n P ./a.out

> mpiexec –h

Run the program locally as P processes

Run the program as P processes on the nodes
from hostfile.

A hostfile has node names one to a line
followed by a colon and the number of

available processors
Ask mpiexc for

information about
mpiexec options.

11MPIch from Argonne national lab: https://www.mpich.org/

12

Exercise: Hello world part 1
• Goal

– To confirm that you can run a program in parallel.
• Program

– Add MPI to your path. In your “.bashrc file” add the line

–PATH=$PATH:/usr/lib64/mpich/bin
– Write a program that prints “hello world” to the screen.
– Use mpiexec to run multiple copies of the program.

– Run them on your shared memory node
– Run them across the nodes of a cluster (hint: you’ll need a hostfile)
– To run 3 processes on one node and 4 on another, my hostfile would be (assuming my two

nodes are named esc-33 and esc-55):

To run the executable hello on 2 processes on my local machine type:
> mpiexec –n 4 ./a.out

esc-33:3
esc-55:4

To run the executable hello on 7 processes on my two node cluster:
> mpiexec –hostfile hostfile –n 7 ./a.out

13

An MPI program at runtime
• Typically, when you run an MPI program, multiple processes all running

the same program are launched … working on their own block of data.

The collection of processes involved in a computation is called “a
process group”

14

An MPI program at runtime
• Typically, when you run an MPI program, multiple processes all running

the same program are launched … working on their own block of data.

You can dynamically split a process group into multiple subgroups
to manage how processes are mapped onto different tasks

15

MPI Hello World

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf("Hello from process %d of %d\n",

rank, size);
MPI_Finalize();
return 0;

}

16

Initializing and finalizing MPI

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf("Hello from process %d of %d\n",

rank, size);
MPI_Finalize();
return 0;

}

int MPI_Init (int* argc, char* argv[])
§ Initializes the MPI library … called before any

other MPI functions.
§ agrc and argv are the command line args passed

from main()

int MPI_Finalize (void)
§ Frees memory allocated by the MPI library … close

every MPI program with a call to MPI_Finalize

17

How many processes are involved?

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf("Hello from process %d of %d\n",

rank, size);
MPI_Finalize();
return 0;

}

int MPI_Comm_size (MPI_Comm comm, int* size)
§ returns the number of processes in the process group

18

How many processes are involved?

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf("Hello from process %d of %d\n",

rank, size);
MPI_Finalize();
return 0;

}

int MPI_Comm_size (MPI_Comm comm, int* size)
§ returns the number of processes in the process group

What is MPI_COMM_WORLD?

It’s a communicator (of type
MPI_Comm)

MPI_COMM_WORLD defines
a name space for the
communication events inside
MPI. This includes the
process group and any other
meta-data about the set of
cooperating processes.

19

How many processes are involved?

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf("Hello from process %d of %d\n",

rank, size);
MPI_Finalize();
return 0;

}

int MPI_Comm_size (MPI_Comm comm, int* size)
§ returns the number of processes in the process group

Other than init() and finalize(),
every MPI function has a
communicator.

You can build your own
communicators to support
libraries or segregate
operations into different
process groups.

But most of us just use the one
global communicator,
MPI_COMM_WORLD

20

Which process “am I” (the rank)

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf("Hello from process %d of %d\n",

rank, size);
MPI_Finalize();
return 0;

}

int MPI_Comm_rank (MPI_Comm comm, int* rank)
§ MPI_Comm_rank An integer ranging from 0 to “(num of procs)-1”

21

Running the program

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf("Hello from process %d of %d\n",

rank, size);
MPI_Finalize();
return 0;

}

§ On a 4 node cluster, I’d run this
program (hello) as:
> mpiexec –n 4 hello

• What would this program would output?

22

Exercise: Hello world part 2
• Goal

– To confirm that you can run an MPI program on our cluster

• Program
– Write a program that prints “hello world” to the screen.
– Modify it to run as an MPI program … with each process in the process group printing “hello world” and

its rank
– Compile with mpicc … which is a wrapper around the C compiler and understands most C compiler

options

% mpiexec hello.c –o hello
#include <mpi.h>
int size, rank, argc; char **argv;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Finalize();

To run the executable hello on 4 processes on my local node:
> mpiexec –n 4 hello

23

Running the program

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf("Hello from process %d of %d\n",

rank, size);
MPI_Finalize();
return 0;

}

§ On a 4 node cluster, I’d run this
program (hello) as:
> mpirun –n 4 hello
Hello from process 1 of 4
Hello from process 2 of 4
Hello from process 0 of 4
Hello from process 3 of 4

24

Outline

• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments

25

A typical pattern with MPI Programs

• Many MPI applications directly call few (if any) message passing
routines. They use the following very common pattern:

§ Use the Single Program Multiple Data pattern
§ Each process maintains a local view of the

global data
§ A problem broken down into phases each of

which is composed of two subphases:
• Compute on local view of data
• Communicate to update global view on all

processes (collective communication).
§ Continue phases until complete

Collective comm.

Collective comm.

P0 P3P2P1

Processes

Time

This is a subset or the SPMD pattern sometimes
referred to as the Bulk Synchronous pattern.

26

Collective Communication: Reduction
int MPI_Reduce (void* sendbuf,

void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op,
int root, MPI_Comm comm)

• MPI_Reduce performs specified reduction operation (op) on the count values in sendbuf from
all processes in communicator. Places result in recvbuf on the process with rank root only.

Operation Function
MPI_SUM Summation
MPI_PROD Product
MPI_MIN Minimum value
MPI_MINLOC Minimum value and

location
MPI_MAX Maximum value
MPI_MAXLOC Maximum value and

location
MPI_LAND Logical AND

Operation Function
MPI_BAND Bitwise AND
MPI_LOR Logical OR
MPI_BOR Bitwise OR
MPI_LXOR Logical exclusive OR
MPI_BXOR Bitwise exclusive OR
User-defined It is possible to define new

reduction operations

Returns
MPI_SUCCESS
if there were no

errors

MPI Data Type* C Data Type

MPI_CHAR char

MPI_DOUBLE double

MPI_FLOAT float

MPI_INT int

MPI_LONG long

MPI_LONG_DOUBLE long double

MPI_SHORT short

*This is a subset of available MPI types

27

MPI_REDUCE Example

#include <mpi.h>

int main(int argc, char* argv[]) {
int buf, sum, nprocs, myrank;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

sum = 0;
msg = myrank;

MPI_Reduce(&buf, &sum, 1, MPI_INT,
MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Finalize();
}

MPI_COMM_WORLD

Rank 1

1buf

Rank 0

3sum

0buf

MPI_REDUCE

2buf

Rank 2

0 + 1 + 2

Example Problem: Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx » p
i = 0

N

Mathematically, we know that:

We can approximate the
integral as a sum of
rectangles:

Where each rectangle has
width Dx and height F(xi) at
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.
0

2.
0

1.
0X0.

0

29

PI Program: an example

static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
x = 0.5 * step;

for (i=0;i<= num_steps; i++){
x+=step;
sum += 4.0/(1.0+x*x);

}
pi = step * sum;

}

30

Exercise: Pi Program
• Goal

– To write a simple Bulk Synchronous, SPMD program

• Program
– Start with the provided “pi program” and using an MPI reduction, write a parallel

version of the program. Explore its scalability on your system.

#include <mpi.h>
int size, rank, argc; char **argv;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Finalize();

int MPI_Reduce (void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

MPI_Op Function
MPI_SUM Summation

MPI Data Type C Data Type

MPI_DOUBLE double
MPI_FLOAT float
MPI_INT int
MPI_LONG long

31

Pi program in MPI

#include <mpi.h>
void main (int argc, char *argv[])
{

int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;
step = 1.0/(double) num_steps ;
MPI_Init(&argc, &argv) ;
MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
my_steps = num_steps/numprocs ;
for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++)
{

x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
sum *= step ;
MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD) ;

}

Sum values in “sum” from
each process and place it

in “pi” on process 0

MPI Pi program performance

*Intel compiler (icpc) with –O3 on Apple OS X 10.7.3 with a dual core (four HW thread)
Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

Thread
or

procs

OpenMP
SPMD
critical

OpenMP
PI Loop

MPI

1 0.85 0.43 0.84
2 0.48 0.23 0.48
3 0.47 0.23 0.46
4 0.46 0.23 0.46

Note: OMP loop used a
Blocked loop distribution.
The others used a cyclic
distribution. Serial ..
0.43.

33

MPI Collective Routines

• Collective communications: called by all processes in the group to create a global
result and share with all participating processes.
– Allgather, Allgatherv, Allreduce, Alltoall, Alltoallv, Bcast, Gather,
Gatherv, Reduce, Reduce_scatter, Scan, Scatter, Scatterv

• Notes:
– Allreduce, Reduce, Reduce_scatter, and Scan use the same set of built-in or user-

defined combiner functions.
– Routines with the “All” prefix deliver results to all participating processes
– Routines with the “v” suffix allow chunks to have different sizes

• Global synchronization is available in MPI
– MPI_Barrier(comm)

• Blocks until all processes in the group of the communicator comm call it.

Collective Data Movement

A
B

D
C

B C D

A
A

A
A

Broadcast

Scatter

Gather

A

A

P0
P1
P2
P3

P0
P1
P2
P3

Take a value from P0
and give a copy to
P1, P2 and P3

Scatter an array on
P0 to P1, P2, and P3

Gather values from
P1, P2, and P3 into
an array on P0

More Collective Data Movement

A
B

D
C

A0B0 C0D0
A1B1 C1D1

A3B3 C3D3
A2B2 C2D2

A0A1A2A3
B0 B1 B2 B3

D0D1D2D3
C0 C1 C2 C3

A B C D
A B C D

A B C D
A B C D

Allgather

Alltoall

P0
P1
P2
P3

P0
P1
P2
P3

Take a chunk from each
P and gather into a
single array on each P

Take arrays on each P
and spread them out to
arrays on each P

Collective Computation

P0
P1
P2
P3

P0
P1
P2
P3

A
B

D
C

A
B

D
C

ABCD

A
AB

ABC
ABCD

Reduce

Scan

Take values on each P
and combine them with
an op (such as add) into
a single value on one P.

Take values on each P
and combine them with a
scan operation and
spread the scan array
out among all P.

37

Outline

• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments

38

Sending and receiving messages
• Pass a buffer which holds “count” values of MPI_TYPE
• The data in a message to send or receive is described by a triple:

- (address, count, datatype)

Address of
Local
Buffer

count Datatype

MPI_Send (buff, 100, MPI_DOUBLE, Dest, tag, MPI_COMM_WORLD);

• The receiving process identifies messages with the double :
- (source, tag)

• Where:
- Source is the rank of the sending process
- Tag is a user-defined integer to help the receiver keep track of different

messages from a single source

Rank of Source node

tag

MPI_Recv (buff, 100, MPI_DOUBLE, Src, tag, MPI_COMM_WORLD, &status);

39

Sending and Receiving messages: More Details

MPI_Status is a variable that contains information about the message that is received. We can use it to find out information
about the received message. The most common usage is to find out how many items were in the message:

MPI_Status MyStat; int count; float buff[4];
int ierr = MPI_Recv(buf, 4, MPI_FLOAT, 2, 0, MPI_COMM_WORLD, &MyStat); // receive message from node=2 with message tag = 0
If(ierr == MPI_SUCCESS) MPI_Get_Count(MyStat, MPI_FLOAT, &count);

For messages of a known size, we typically ignore the status, in which case use the parameter MPI_STATUS_IGNORE

int ierr = MPI_Recv(&buf, 4, MPI_FLOAT, 2, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

int MPI_Send (void* buf, int count,
MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

int MPI_Recv (void* buf, int count,
MPI_Datatype datatype, int source,
int tag, MPI_Comm comm,
MPI_Status* status)

40

Exercise: Ping-Pong Program
• Goal

– Measure the latency of our communication network.

• Program
– Create a program to bounce a message between a pair of processes. Bounce the message back and

forth multiple times and report the average on-way communication time. Figure out how to use this so
called “ping-pong” program to measure the latency of communication on your system.

#include <mpi.h>
int size, rank, argc; char **argv;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
double MPI_Wtime();
MPI_Finalize();

MPI Data Type C Data Type
MPI_DOUBLE double

MPI_FLOAT float

MPI_INT int

MPI_LONG long

int MPI_Send (void* buf, int count,MPI_Datatype datatype, int dest,int tag, MPI_Comm comm)

int MPI_Recv (void* buf, int count,MPI_Datatype datatype, int source,int tag,
MPI_Comm comm, MPI_Status* status)

41

Solution: Ping-Pong Program
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#define VAL 42
#define NREPS 10
#define TAG 5

int main(int argc, char **argv) {
int rank, size;
double t0;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

int bsend = VAL;
int brecv = 0;
MPI_Status stat;
if(rank == 0) t0 = MPI_Wtime();

for(int i=0;i<NREPS; i++){
if(rank == 0){

MPI_Send(&bsend, 1, MPI_INT, 1, TAG, MPI_COMM_WORLD);
MPI_Recv(&brecv, 1, MPI_INT, 1, TAG, MPI_COMM_WORLD, &stat);
if(brecv != VAL)printf("error: interation %d %d != %d\n",i,brecv,VAL);
brecv = 0;

}
else if(rank == 1){

MPI_Recv(&brecv, 1, MPI_INT, 0, TAG, MPI_COMM_WORLD, &stat);
MPI_Send(&bsend, 1, MPI_INT, 0, TAG, MPI_COMM_WORLD);
if(brecv != VAL)printf("error: interation %d %d != %d\n",i,brecv,VAL);
brecv = 0;

}
}
if(rank == 0){

double t = MPI_Wtime() - t0;
double lat = t/(2*NREPS);
printf(" lat = %f seconds\n",(float)lat);

}
MPI_Finalize();

}

MPI Data Types for C

MPI Data Type C Data Type
MPI_BYTE

MPI_CHAR signed char
MPI_DOUBLE double
MPI_FLOAT float
MPI_INT int
MPI_LONG long
MPI_LONG_DOUBLE long double
MPI_PACKED

MPI_SHORT short
MPI_UNSIGNED_SHORT unsigned short
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long
MPI_UNSIGNED_CHAR unsigned char

MPI provides
predefined data
types that must be
specified when
passing messages.

43

Outline

• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments

44

Buffers
• Message passing is straightforward, but there are subtleties

– Buffering and deadlock
– Deterministic execution
– Performance

• When you send data, where does it go? One possibility is:
Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

Derived from slides provided by Bill Gropp of UIUC

45

Blocking Send-Receive Timing Diagram
(Receive before Send)

send side receive side

MPI_Send: T1

T4: MPI_Recv returns

MPI_Send returns T2

Once receive
is called @ T0,
Local buffer unavailable
to user

Local buffer filled and
available to user

It is important to post the receive before
sending, for highest performance.

T0: MPI_Recv

Local
buffer can
be reused

T3: Transfer Complete

time time

46

• Send a large message from process 0 to process 1
– If there is insufficient storage at the destination, the send must

wait for the user to provide the memory space (through a
receive)

• What happens with this code?

Sources of Deadlocks

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

• This code could deadlock … it depends on the
availability of system buffers in which to store the
data sent until it can be received

Slide source: based on slides from Bill Gropp, UIUC

47

Some Solutions to the “deadlock” Problem

• Order the operations more carefully:

• Supply receive buffer at same time as send:

Process 0

Send(1)
Recv(1)

Process 1

Recv(0)
Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

Slide source: Bill Gropp, UIUC

48

More Solutions to the “unsafe” Problem

• Supply a sufficiently large buffer in the send function

• Use non-blocking operations:

Process 0

Bsend(1)
Recv(1)

Process 1

Bsend(0)
Recv(0)

Process 0

Isend(1)
Irecv(1)
Waitall

Process 1

Isend(0)
Irecv(0)
Waitall

Slide source: Bill Gropp, UIUC

49

Non-Blocking Communication

• Non-blocking operations return immediately and pass ‘‘request handles” that
can be waited on and queried

– MPI_Isend(start, count, datatype, dest, tag, comm, request)
– MPI_Irecv(start, count, datatype, src, tag, comm, request)
– MPI_Wait(request, status)

• One can also test without waiting using MPI_TEST
– MPI_Test(request, flag, status)

• Anywhere you use MPI_Send or MPI_Recv, you can use the pair of
MPI_Isend/MPI_Wait or MPI_Irecv/MPI_Wait

• Note the MPI types:
MPI_Status status; // type used with the status output from recv
MPI_Request request; // the type of the handle used with isend/ircv

Non-blocking operations are extremely important … they
allow you to overlap computation and communication.

50

buffer unavailable
to user

Non-Blocking Send-Receive Diagram

send side receive side

MPI_Isend

T8: MPI_Wait returns

T3 buffer unavailable
to user

receive buffer
filled and available

to the user

T0: MPI_Irecv

T7: transfer finishes

T4: MPI_Wait called

Sender completes

T1: MPI_Irecv Returns

T5

tim
e

tim
e

T2
MPI_Isend returns

T6
T9

MPI_Wait

MPI_Wait returns

buffer available
to user

51

Exercise: Ring program
• Start with the basic ring program we provide. Run it for a range of message sizes

and notes what happens for large messages.
– It may deadlock if the network stalls due to there being no place to put a message (i.e.

no receives in place so the send blocking on when its buffer can be reused hangs).
• Try to make it more stable for large messages by:

– Split-phase … have the nodes “send than receive” while the other half “receive then
send”.

– Sendrecv … a collective communication send/receive.
– Isend/Irecv … nonblocking send receive

double *buff; int buff_count, to, from, tag=3; MPI_Status stat;

MPI_Recv (buff, buff_count, MPI_DOUBLE, from, tag, MPI_COMM_WORLD, &stat);
MPI_Send (buff, buff_count, MPI_DOUBLE, to, tag, MPI_COMM_WORLD);
MPI_Isend(Buff, count, datatype, dest, tag, comm, request)
MPI_Irecv(Buff, count, datatype, src, tag, comm, request)
MPI_Wait(request, status)
MPI_Sendrecv (snd_buff, buff_count, MPI_DOUBLE, to, tag,

rcv_buf, buff_count, MPI_DOUBLE, to, tag, MPI_COMM_WORLD, &stat);

52

Example: shift messages around a ring (part 1 of 2)
#include <stdio.h>
#include <mpi.h>

int main(int argc, char **argv)
{

int num, rank, size, tag, next, from;
MPI_Status status1, status2;
MPI_Request req1, req2;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
tag = 201;
next = (rank+1) % size;
from = (rank + size - 1) % size;
if (rank == 0) {

printf("Enter the number of times around the ring: ");
scanf("%d", &num);

printf("Process %d sending %d to %d\n", rank, num, next);
MPI_Isend(&num, 1, MPI_INT, next, tag,

MPI_COMM_WORLD,&req1);
MPI_Wait(&req1, &status1);

}

do {
MPI_Irecv(&num, 1, MPI_INT, from, tag,

MPI_COMM_WORLD, &req2);
MPI_Wait(&req2, &status2);

if (rank == 0) {
num--;
printf("Process 0 decremented number\n");

}

printf("Process %d sending %d to %d\n", rank, num, next);
MPI_Isend(&num, 1, MPI_INT, next, tag,

MPI_COMM_WORLD, &req1);
MPI_Wait(&req1, &status1);

} while (num != 0);

if (rank == 0) {
MPI_Irecv(&num, 1, MPI_INT, from, tag,

MPI_COMM_WORLD, &req2);
MPI_Wait(&req2, &status2);

}
MPI_Finalize();
return 0;

}

53

Outline

• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments

54

Example: finite difference methods

• Solve the heat diffusion equation in 1 D:
– u(x,t) describes the temperature field
– We set the heat diffusion constant to one
– Boundary conditions, constant u at endpoints.

ihxxi += 0

t
u

x
u

¶
¶

=
¶
¶

2

2

n map onto a mesh with stepsize h and k

n Central difference approximation for spatial
derivative (at fixed time) 2

11
2

2 2
h

uuu
x
u jjj -+ +-

=
¶
¶

iktti += 0

n Time derivative at t = tn+1
k
uu

dt
du nn -

=
+1

55

Example: Explicit finite differences
• Combining time derivative expression using spatial derivative at t = tn

2
11

1 2
h

uuu
k
uu n

j
n
j

n
j

n
j

n
j -+
+ +-

=
-

n Solve for u at time n+1 and step j

n The solution at t = tn+1 is determined explicitly from the solution at t = tn
(assume u[t][0] = u[t][N] = Constant for all t).

n
j

n
j

n
j

n
j ruruuru 11
1)21(+-
+ ++-=

2h
kr =

for (int t = 0; t < N_STEPS-1; ++t)
for (int x = 1; x < N-1; ++x)

u[t+1][x] = u[t][x] + r*(u[t][x+1] - 2*u[t][x] + u[t][x-1]);

n Explicit methods are easy to compute … each point updated based on nearest
neighbors. Converges for r<1/2.

56

Heat Diffusion equation

infinitesimally narrow rod (~one D)

“infinite” heat
bath (fixed

temperature,
T2)

“infinite” heat
bath (fixed

temperature,
T1)

T2T1

57

Heat Diffusion equation

infinitesimally narrow rod (~one D)

T2T1

Pictorially, you are sliding a three
point “stencil” across the domain
(u[t]) and computing a new value of
the center point (u[t+1]) at each stop.

58

Heat Diffusion equation

int main()
{

double *u = malloc (sizeof(double) * (N));
double *up1 = malloc (sizeof(double) * (N));

initialize_data(uk, ukp1, N, P); // init to zero, set end temperatures
for (int t = 0; t < N_STEPS; ++t){

for (int x = 1; x < N-1; ++x)
up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

temp = up1; up1 = u; u = temp;
}

return 0;

T2T1

A well known trick with 2 arrays so I
don’t overwrite values from step k-1
as I fill in for step k

Note: I don’t need the
intermediate “u[t]” values

hence “u” is just indexed by x.

59

Heat Diffusion equation

int main()
{

double *u = malloc (sizeof(double) * (N));
double *up1 = malloc (sizeof(double) * (N));

initialize_data(uk, ukp1, N, P); // init to zero, set end temperatures
for (int t = 0; t < N_STEPS; ++t){

for (int x = 1; x < N-1; ++x)
up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

temp = up1; up1 = u; u = temp;
}

return 0;

T2T1

How would
you
parallelize
this program?

60

Heat Diffusion equation

T2T1

• Start with our original picture of the problem … a one
dimensional domain with end points set at a fixed
temperature.

61

Heat Diffusion equation

T2T1

• Break it into chunks assigning one chunk to each process.

P0 P1 P2 P3

62

Heat Diffusion equation

T2T1

• Each process works on it’s own chunk … sliding the stencil
across the domain to updates its own data.

P0 P1 P2 P3

63

Heat Diffusion equation

T2T1

• What about the ends of each chunk … where the stencil will
run off the end and hence have missing values for the
computation?

?

64

Heat Diffusion equation

T2T1

• We add ghost cells to the ends of each chunk, update them
with the required values from neighbor chunks at each time
step … hence giving the stencil everything it needs on any
given chunk to update all of its values.

Ghost
cell

Ghost
cell

65

Heat Diffusion MPI Example

MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &P);
MPI_Comm_rank (MPI_COMM_WORLD, &myID);
double *u = malloc (sizeof(double) * (2 + N/P)) // include "Ghost Cells"
double *up1 = malloc (sizeof(double) * (2 + N/P)); // to hold values

// from my neighbors
initialize_data(uk, ukp1, N, P);
for (int t = 0; t < N_STEPS; ++t){

if (myID != 0) MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD);
if (myID != P-1) MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status);
if (myID != P-1) MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD);
if (myID != 0) MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status);

for (int x = 2; x < N/P; ++x)
up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

if (myID != 0)
up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]);

if (myID != P-1)
up1[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);

temp = up1; up1 = u; u = temp;

} // End of for (int t ...) loop

MPI_Finalize();
return 0;

We write/explain
this part first and
then address the
communication
and data
structures

66

Heat Diffusion MPI Example
// Compute interior of each “chunk”

for (int x = 2; x < N/P; ++x)
up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

// update edges of each chunk keeping the two far ends fixed
// (first element on Process 0 and the last element on process P-1).

if (myID != 0)
up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]);

if (myID != P-1)
up1[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);

// Swap pointers to prepare for next iterations
temp = up1; up1 = u; u = temp;

} // End of for (int t ...) loop

MPI_Finalize();
return 0;

Note I was lazy and assumed N was evenly
divided by P. Clearly, I’d never do this in a
“real” program.

Update array values using local data
and values from ghost cells.

u[0] and
u[N/P+1] are the

ghost cells

67

Heat Diffusion MPI Example
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &P);
MPI_Comm_rank (MPI_COMM_WORLD, &myID);
double *u = malloc (sizeof(double) * (2 + N/P)) // include "Ghost Cells"
double *up1 = malloc (sizeof(double) * (2 + N/P)); // to hold values

// from my neighbors
initialize_data(uk, ukp1, N, P);
for (int t = 0; t < N_STEPS; ++t){

if (myID != 0)
MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD);

if (myID != P-1)
MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status);

if (myID != P-1)
MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD);

if (myID != 0)
MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status);

/* continued on previous slide */

1D PDE solver … the simplest “real” message
passing code I can think of. Note: edges of
domain held at a fixed temperature

Send my “left” boundary value to the neighbor on my “left’

Receive my “right” ghost cell from the neighbor to my “right’

Send my “right” boundary value to the neighbor to my “right’

Receive my “left” ghost cell from the neighbor to my “left”

68

The Geometric Decomposition Pattern

T2T1

Ghost
cell

Ghost
cell

§ This is an instance of a very important design pattern … the Geometric
decomposition pattern.

69

Partitioned Arrays

• Realistic problems are 2D or 3D; require
more complex data distributions.

• We need to parallelize the computation by
partitioning this index space

• Example: Consider a 2D domain over
which we wish to solve a PDE using an
explicit finite difference solver . The figure
shows a five point stencil … update a
value based on its value and its 4
neighbors.

• Start with an array à

70

Partitioned Arrays: Column block distribution

• Split the non-unit-stride dimension (P-1) times to produce P chunks, assign the ith chunk
to Pi. WIth N = n * n, P = p * p

• In a 2D finite-differencing program (exchange edges), how much do we have to
communicate? 2*n = 2*sqrt(N) messages per processor

UE = unit of
execution … think of
it as a generic term
for “process or
thread”

P is the
of
processors

71

Partitioned Arrays: Block distribution
• If we parallelize in both dimensions, then we have (n/p)2 elements per processor, and

we need to send 4*(n/p) = 4 *sqrt(N/P) messages from each processor.
Asymptotically better than 2*sqrt(N).

P is the
of
processors

72

Partitioned Arrays: block cyclic distribution

• LU decomposition (A= LU) .. Move down the
diagonal transform rows to “zero the column” below
the diagonal.

§ Zeros fill in the right lower triangle of the
matrix … less work to do.

§ Balance load with cyclic distribution of
blocks of A mapped onto a grid of nodes
(2x2 in this case … colors show the
mapping to nodes).

* * ** * * * *
0 * ** * * * *
0 0 ** * * * *
0 0 *0 * * * *
0 0 *0 * * * *
0 0 *0 * * * *
0 0 *0 * * * *
0 0 *0 * * * *

73

Outline

• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments

The 12 core functions in MPI

74

• MPI_Init
• MPI_Finish
• MPI_Comm_size
• MPI_Comm_rank
• MPI_Send
• MPI_Recv
• MPI_Reduce
• MPI_Isend
• MPI_Irecv
• MPI_Wait
• MPI_Wtime
• MPI_Bcast

The 12 core functions in MPI

75

• MPI_Init
• MPI_Finish
• MPI_Comm_size
• MPI_Comm_rank
• MPI_Send
• MPI_Recv
• MPI_Reduce
• MPI_Isend
• MPI_Irecv
• MPI_Wait
• MPI_Wtime
• MPI_Bcast

10

Real Programmers always try to overlap
communication and computation .. Post your
receives using MPI_Irecv() then where
appropriate, MPI_Isend().

76

Does a shared address space make
programming easier?

Time

Effort

Extra work upfront, but easier
optimization and debugging means

overall, less time to solution
Message passing

Time

Effort

initial parallelization can be
quite easy

Multi-threading

But difficult debugging and
optimization means overall

project takes longer

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica, vol. 35 pp. 321–345,
2003

Proving that a shared address space program using
semaphores is race free is an NP-complete problem*

77

MPI References

• The Standard itself:
–at http://www.mpi-forum.org
–All MPI official releases, in both postscript and HTML

• Other information on Web:
–at http://www.mcs.anl.gov/mpi
–pointers to lots of stuff, including other talks and

tutorials, a FAQ, other MPI pages

http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi

78

Books for learning MPI

• Using MPI-2: Portable Parallel Programming
with the Message-Passing Interface, by Gropp,
Lusk, and Thakur, MIT Press, 1999..

§ Parallel Programming with MPI, by Peter Pacheco,
Morgan-Kaufmann, 1997.

§ Patterns for Parallel Programing, by Tim Mattson,
Beverly Sanders, and Berna Massingill.

79

Backup

• Mixing OpenMP and MPI

• Loading MPI on your system

80

How do people mix MPI and OpenMP?

Replicate the program.

Add glue code

Break up the data

A sequential program
working on a data set

•Create the MPI program
with its data decomposition.

• Use OpenMP inside each
MPI process.

81

Pi program with MPI and OpenMP

#include <mpi.h>
#include “omp.h”
void main (int argc, char *argv[])
{

int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;
step = 1.0/(double) num_steps ;
MPI_Init(&argc, &argv) ;
MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
my_steps = num_steps/numprocs ;

#pragma omp parallel for reduction(+:sum) private(x)
for (i=my_id*my_steps; i<(m_id+1)*my_steps ; i++)
{

x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
sum *= step ;
MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD) ;

}

Get the MPI
part done
first, then
add OpenMP
pragma
where it
makes sense
to do so

82

Key issues when mixing OpenMP and MPI

1. Messages are sent to a process not to a particular thread.
– Not all MPIs are threadsafe. MPI 2.0 defines threading modes:

– MPI_Thread_Single: no support for multiple threads
– MPI_Thread_Funneled: Mult threads, only master calls MPI
– MPI_Thread_Serialized: Mult threads each calling MPI, but they

do it one at a time.
– MPI_Thread_Multiple: Multiple threads without any restrictions

– Request and test thread modes with the function:
MPI_init_thread(desired_mode, delivered_mode, ierr)

2. Environment variables are not propagated by mpirun. You’ll
need to broadcast OpenMP parameters and set them with
the library routines.

83

Dangerous Mixing of MPI and OpenMP

• The following will work only if MPI_Thread_Multiple is supported … a
level of support I wouldn’t depend on.

MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;
#pragma omp parallel
{

int tag, swap_neigh, stat, omp_id = omp_thread_num();
long buffer [BUFF_SIZE], incoming [BUFF_SIZE];
big_ugly_calc1(omp_id, mpi_id, buffer);

// Finds MPI id and tag so
neighbor(omp_id, mpi_id, &swap_neigh, &tag); // messages don’t conflict

MPI_Send (buffer, BUFF_SIZE, MPI_LONG, swap_neigh,
tag, MPI_COMM_WORLD);

MPI_Recv (incoming, buffer_count, MPI_LONG, swap_neigh,
tag, MPI_COMM_WORLD, &stat);

big_ugly_calc2(omp_id, mpi_id, incoming, buffer);
#pragma critical

consume(buffer, omp_id, mpi_id);
}

84

Messages and threads
• Keep message passing and threaded sections of your program

separate:
– Setup message passing outside OpenMP parallel regions (MPI_Thread_funneled)
– Surround with appropriate directives (e.g. critical section or master)

(MPI_Thread_Serialized)
– For certain applications depending on how it is designed it may not matter which

thread handles a message. (MPI_Thread_Multiple)
–Beware of race conditions though if two threads are probing on the

same message and then racing to receive it.

85

Safe Mixing of MPI and OpenMP
Put MPI in sequential regions

MPI_Init(&argc, &argv) ; MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;

// a whole bunch of initializations

#pragma omp parallel for
for (I=0;I<N;I++) {

U[I] = big_calc(I);
}

MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, swap_neigh,
tag, MPI_COMM_WORLD);

MPI_Recv (incoming, buffer_count, MPI_DOUBLE, swap_neigh,
tag, MPI_COMM_WORLD, &stat);

#pragma omp parallel for
for (I=0;I<N;I++) {

U[I] = other_big_calc(I, incoming);
}

consume(U, mpi_id);

!"#$%&#'(()*+",-&."/*
0123!$."'435-%%"("46*7-8*2*
$'9"*%"9".*$'4*'*:.;7("<*=&8$*
8$&/*'::.;'#$*>*"9"%*=&8$*
:."?012?@AB*(&7.'.&"/A

86

Safe Mixing of MPI and OpenMP
Protect MPI calls inside a parallel region

MPI_Init(&argc, &argv) ; MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;

// a whole bunch of initializations

#pragma omp parallel
{
#pragma omp for

for (I=0;I<N;I++) U[I] = big_calc(I);

#pragma master
{

MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD);
MPI_Recv (incoming, count, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD, &stat);

}
#pragma omp barrier
#pragma omp for

for (I=0;I<N;I++) U[I] = other_big_calc(I, incoming);

#pragma omp master
consume(U, mpi_id);

}

!"#$%&#'(()*+",-&."/*
0123!$."'435-%%"("46*7-8*2*
$'9"*%"9".*$'4*'*:.;7("<*=&8$*
8$&/*'::.;'#$*>*"9"%*=&8$*
:."?012?@AB*(&7.'.&"/A

87

Hybrid OpenMP/MPI works, but is it worth it?

• Literature* is mixed on the hybrid model: sometimes its better, sometimes
MPI alone is best.

• There is potential for benefit to the hybrid model
– MPI algorithms often require replicated data making them less memory

efficient.
– Fewer total MPI communicating agents means fewer messages and less

overhead from message conflicts.
– Algorithms with good cache efficiency should benefit from shared caches of

multi-threaded programs.
– The model maps perfectly with clusters of SMP nodes.

• But really, it’s a case by case basis and to large extent depends on the
particular application.

!"#$%&'()*+,$)*&$-')./)*0$1223

88

Backup

• Mixing OpenMP and MPI

• Loading MPI on your system

89

MPIch library on Apple Laptops: MacPorts

• To use MPI on your Apple laptop:
– Download Xcode. Be sure to choose the command line tools that match your OS.
– Install MacPorts (if you haven’t already … use the installer for your OS from macports.org).

sudo port selfupdate

sudo port install mpich-gcc9

mpicc hello.c

mpiexec –n 4 ./a.out

Update to latest version of
MacPorts

Graph the library that matches the
version of your gcc compiler.

Test the installation with a simple
program

