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Disclaimer
• The views expressed in this talk are those of the speaker and not his 

employer.

• If I say something “smart” or worthwhile:
– Credit goes to the many smart people I work with.

• If I say something stupid…
– It’s my own fault

I work in Intel’s research labs.  I don’t build products.  Instead, 
I get to poke into dark corners and think silly thoughts… just to 

make sure we don’t miss any great ideas.    

Hence, my views are by design far “off the roadmap”.
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The Big “Three”

• In HPC, “three” programming environments dominate … covering the major classes of 
hardware.

1. OpenMP:  Shared memory systems … more recently, GPUs too.

2. MPI:  distributed memory systems … though it works nicely on shared memory 
computers.

3. CUDA, OpenACC, OpenCL, OpenMP/Target, Sycl:  GPU programming

(use CUDA or OpenACC if you don’t mind locking yourself to a single vendor)

• Even if you don’t plan to spend much time programming with these systems … a well rounded 
HPC programmer should know what they are and how they work.
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The Big “Three”

• In HPC, “three” programming environments dominate … covering the major classes of 
hardware.

1. OpenMP:  Shared memory systems … more recently, GPUs too.

2. MPI:  distributed memory systems … though it works nicely on shared memory 
computers.

3. CUDA, OpenACC, OpenCL, OpenMP/Target, Sycl:  GPU programming

(use CUDA or OpenACC if you don’t mind locking yourself to a single vendor)

• Even if you don’t plan to spend much time programming with these systems … a well rounded 
HPC programmer should know what they are and how they work.

These all are 
expressions of 

the same 
execution model 

… so I lump them 
together.
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A “Hands-on” Introduction to MPI

* The name “MPI” is the property of the MPI forum (http://www.mpi-forum.org).

Tim Mattson          Intel Corp.            timothy.g.mattson@ intel.com
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Outline

• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments
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Execution Model:  Distributed memory, CSP*
• Program consists of a collection of named processes.

– Number of processes almost always fixed at program startup time
– Local address space per node -- NO physically shared memory.

• Processes communicate by explicit send/receive pairs
– Coordination is implicit in every communication event.
– MPI (Message Passing Interface) is the most commonly used API

Network

Process P0

Code & Static Data

Memory

Resources

…

S: 12

t: 4200
phi: “foo”

…

Process P1

Code & Static Data

Memory

Resources

…

S: 0x: 42

foo: “bar”

Process Pn

Code & Static Data

Memory

Resources

…

S: 11 y: 23

zz: “tops”
send (P1,s)receive (Pn,s)

S: 11

*CSP: communicating sequential processes
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Parallel API’s: MPI,  the Message Passing Interface

omp_set_lock(lck)MPI_Bsend_init

MPI_Pack

MPI_Sendrecv_replace

MPI_Recv_init

MPI_Allgatherv

MPI_Unpack 

MPI_Sendrecv

MPI_Bcast

MPI_Ssend

C$OMP ORDERED MPI_Startall

MPI_Test_cancelled 

MPI_Type_free

MPI_Type_contiguous

MPI_Barrier

MPI_Start

MPI_COMM_WORLD

MPI_Recv

MPI_Send

MPI_Waitall

MPI_Reduce

MPI_Alltoallv

MPI_Group_compare

MPI_Scan

MPI_Group_size

MPI_Errhandler_create

MPI:  An API for Writing Applications 
for Distributed Memory Systems

–A library of routines to coordinate the execution 
of multiple processes. 
–Provides point to point and collective 

communication  in Fortran, C and C++ 
–Unifies last 30 years of  cluster computing and 

MPP practice
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How do people use MPI?
The SPMD Design Pattern

Replicate the program.

Add glue code

Break up the data

A sequential program 
working on a data set

•A  single program working on a 
decomposed data set.

•Use Node ID and numb of nodes to 
split up work between processes

• Coordination by passing messages.



Running MPI programs

• MPI implementations include a way to start “P processes” on the system.

• For MPIch (the most common MPI implementation), this is done with the 
mpiexec command:

> mpiexec –n P ./a.out

• There are many options for mpiexec.  

> mpiexec –hostfile hostfile –n P ./a.out

> mpiexec –h  

Run the program locally as P processes

Run the program as P processes on the nodes 
from hostfile.  

A hostfile has node names one to a line 
followed by a colon and the number of 

available processors
Ask mpiexc for 

information about 
mpiexec options.  

11MPIch from Argonne national lab:   https://www.mpich.org/
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Exercise: Hello world part 1
• Goal

– To confirm that you can run a program in parallel.
• Program

– Add MPI to your path.  In your “.bashrc file” add the line

–PATH=$PATH:/usr/lib64/mpich/bin
– Write a program that prints “hello world” to the screen.
– Use mpiexec to run multiple copies of the program.

– Run them on your shared memory node
– Run them across the nodes of a cluster (hint: you’ll need a hostfile)
– To run 3 processes on one node and 4 on another, my hostfile would be (assuming my two 

nodes are named esc-33 and esc-55):

To run the executable hello on 2 processes on my local machine type:
> mpiexec –n 4 ./a.out

esc-33:3
esc-55:4

To run the executable hello on 7 processes on my two node cluster:
> mpiexec –hostfile hostfile –n 7 ./a.out
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An MPI program at runtime
• Typically, when you run an MPI program, multiple processes all running 

the same program are launched … working on their own block of data.

The collection of processes involved in a computation is called “a 
process group”
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An MPI program at runtime
• Typically, when you run an MPI program, multiple processes all running 

the same program are launched … working on their own block of data.

You can dynamically split a process group into multiple subgroups 
to manage how processes are mapped onto different tasks
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MPI Hello World

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );
MPI_Finalize();
return 0;

}
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Initializing and finalizing MPI

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );
MPI_Finalize();
return 0;

}

int MPI_Init (int* argc, char* argv[])
§ Initializes the MPI library … called before any 

other MPI functions.
§ agrc and argv are the command line args passed 

from main()

int MPI_Finalize (void)
§ Frees memory allocated by the MPI library … close 

every MPI program with a call to MPI_Finalize
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How many processes are involved?

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );
MPI_Finalize();
return 0;

}

int MPI_Comm_size (MPI_Comm comm, int* size)
§ returns the number of processes in the process group
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How many processes are involved?

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );
MPI_Finalize();
return 0;

}

int MPI_Comm_size (MPI_Comm comm, int* size)
§ returns the number of processes in the process group

What is MPI_COMM_WORLD?  

It’s a communicator (of type 
MPI_Comm)

MPI_COMM_WORLD defines 
a name space for the 
communication events inside 
MPI.  This includes the 
process group and any other 
meta-data about the set of 
cooperating processes. 
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How many processes are involved?

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );
MPI_Finalize();
return 0;

}

int MPI_Comm_size (MPI_Comm comm, int* size)
§ returns the number of processes in the process group

Other than init() and finalize(), 
every MPI function has a 
communicator.

You can build your own 
communicators to support 
libraries or segregate 
operations into different 
process groups.

But most of us just use the one 
global communicator, 
MPI_COMM_WORLD
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Which process “am I” (the rank)

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );
MPI_Finalize();
return 0;

}

int MPI_Comm_rank (MPI_Comm comm, int* rank)
§ MPI_Comm_rank An integer ranging from 0 to “(num of procs)-1”
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Running the program

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );
MPI_Finalize();
return 0;

}

§ On a 4 node cluster, I’d run this 
program (hello) as:
> mpiexec –n 4 hello

• What would this program would output?
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Exercise: Hello world part 2
• Goal

– To confirm that you can run an MPI  program on our cluster

• Program
– Write a program that prints “hello world” to the screen.
– Modify it to run as an MPI program … with each process in the process group printing “hello world” and 

its rank
– Compile with mpicc … which is a wrapper around the C compiler and understands most C compiler 

options

% mpiexec hello.c –o hello
#include <mpi.h>
int size, rank, argc;   char **argv;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Finalize();

To run the executable hello on 4 processes on my local node: 
> mpiexec –n 4 hello
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Running the program

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );
MPI_Finalize();
return 0;

}

§ On a 4 node cluster, I’d run this 
program (hello) as:
> mpirun –n 4 hello
Hello from process 1 of 4
Hello from process 2 of 4
Hello from process 0 of 4
Hello from process 3 of 4
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Outline

• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments
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A typical pattern with MPI Programs

• Many MPI applications directly call few (if any) message passing 
routines. They use the following very common pattern:

§ Use the Single Program Multiple Data pattern
§ Each process maintains a local view of the 

global data
§ A problem broken down into phases each of 

which is composed of two subphases:
• Compute on local view of data
• Communicate to update global view on all 

processes (collective communication).
§ Continue phases until complete

Collective comm.

Collective comm.

P0 P3P2P1

Processes

Time

This is a subset or the SPMD pattern sometimes 
referred to as the Bulk Synchronous pattern.
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Collective Communication: Reduction
int MPI_Reduce (void* sendbuf,

void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op,
int root, MPI_Comm comm)

• MPI_Reduce performs specified reduction operation (op) on the count values in sendbuf from 
all processes in communicator. Places result in recvbuf on the process with rank root only.

Operation Function
MPI_SUM Summation
MPI_PROD Product
MPI_MIN Minimum value
MPI_MINLOC Minimum value and 

location
MPI_MAX Maximum value
MPI_MAXLOC Maximum value and 

location
MPI_LAND Logical AND

Operation Function
MPI_BAND Bitwise AND
MPI_LOR Logical OR
MPI_BOR Bitwise OR
MPI_LXOR Logical exclusive OR
MPI_BXOR Bitwise exclusive OR
User-defined It is possible to define new 

reduction operations

Returns 
MPI_SUCCESS 
if there were no 

errors

MPI Data Type* C Data Type

MPI_CHAR char

MPI_DOUBLE double

MPI_FLOAT float

MPI_INT int

MPI_LONG long

MPI_LONG_DOUBLE long double

MPI_SHORT short

*This is a subset of available MPI types
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MPI_REDUCE Example

#include <mpi.h>

int main(int argc, char* argv[]) {
int buf, sum, nprocs, myrank;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

sum = 0;
msg = myrank;

MPI_Reduce(&buf, &sum, 1, MPI_INT, 
MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Finalize();
}

MPI_COMM_WORLD

Rank 1

1buf

Rank 0

3sum

0buf

MPI_REDUCE

2buf

Rank 2

0 + 1 + 2



Example Problem:  Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx » p
i = 0

N

Mathematically, we know that:

We can approximate the 
integral as a sum of 
rectangles:

Where each rectangle has 
width Dx and height F(xi) at 
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2 )

4.
0

2.
0

1.
0X0.

0
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PI Program: an example

static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
x = 0.5 * step;

for (i=0;i<= num_steps; i++){
x+=step;
sum += 4.0/(1.0+x*x);

}
pi = step * sum;

}
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Exercise: Pi Program
• Goal

– To write a simple Bulk Synchronous, SPMD program

• Program
– Start with the provided “pi program” and using an MPI reduction, write a parallel 

version of the program.  Explore its scalability on your system.

#include <mpi.h>
int size, rank, argc;   char **argv;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Finalize();

int MPI_Reduce (void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

MPI_Op Function
MPI_SUM Summation

MPI Data Type C Data Type

MPI_DOUBLE double
MPI_FLOAT float
MPI_INT int
MPI_LONG long
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Pi program in MPI 

#include <mpi.h>
void main (int argc, char *argv[])
{

int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ;
step = 1.0/(double) num_steps ;
MPI_Init(&argc, &argv) ;
MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
my_steps = num_steps/numprocs ;  
for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++)
{

x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
sum *= step ; 
MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 
MPI_COMM_WORLD) ;

}

Sum values in “sum” from 
each process and place it 

in “pi” on process 0 



MPI Pi program performance

*Intel compiler (icpc) with –O3 on Apple OS X 10.7.3 with a dual core (four HW thread) 
Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

Thread
or 

procs

OpenMP
SPMD 
critical

OpenMP
PI Loop

MPI

1 0.85 0.43 0.84
2 0.48 0.23 0.48
3 0.47 0.23 0.46
4 0.46 0.23 0.46

Note: OMP loop used a 
Blocked loop distribution.  
The others used a cyclic 
distribution.  Serial .. 
0.43.



33

MPI Collective Routines

• Collective communications: called by all processes in the group to create a global 
result and share with all participating processes.
– Allgather, Allgatherv, Allreduce, Alltoall, Alltoallv, Bcast, Gather, 
Gatherv, Reduce, Reduce_scatter, Scan, Scatter, Scatterv

• Notes:
– Allreduce, Reduce, Reduce_scatter, and Scan use the same set of built-in or user-

defined combiner functions.
– Routines with the “All” prefix deliver results to all participating processes
– Routines with the “v” suffix allow chunks to have different sizes

• Global synchronization is available in MPI
– MPI_Barrier( comm )

• Blocks until all processes in the group of the communicator comm call it.



Collective Data Movement

A
B

D
C

B C D

A
A

A
A

Broadcast

Scatter

Gather

A

A

P0
P1
P2
P3

P0
P1
P2
P3

Take a value from P0 
and give a copy to 
P1, P2 and P3

Scatter an array on 
P0 to P1, P2, and P3

Gather values from 
P1, P2, and P3 into 
an array on P0



More Collective Data Movement

A
B

D
C

A0B0 C0D0
A1B1 C1D1

A3B3 C3D3
A2B2 C2D2

A0A1A2A3
B0 B1 B2 B3

D0D1D2D3
C0 C1 C2 C3

A B C D
A B C D

A B C D
A B C D

Allgather

Alltoall

P0
P1
P2
P3

P0
P1
P2
P3

Take a chunk from each 
P and gather into a 
single array on each P

Take arrays on each P 
and spread them out to 
arrays on each P



Collective Computation

P0
P1
P2
P3

P0
P1
P2
P3

A
B

D
C

A
B

D
C

ABCD

A
AB

ABC
ABCD

Reduce

Scan

Take values on each P 
and combine them with 
an op (such as add) into 
a single value on one P.

Take values on each P 
and combine them with a 
scan operation and 
spread the scan array 
out among all P.
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Outline

• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments
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Sending and receiving messages
• Pass a buffer which holds “count” values of MPI_TYPE
• The data in a message to send or receive is described by a triple:

- (address, count, datatype)

Address of 
Local  
Buffer

count Datatype

MPI_Send (buff, 100, MPI_DOUBLE, Dest, tag, MPI_COMM_WORLD);

• The receiving process identifies messages with the double :
- (source, tag)

• Where:
- Source is the rank of the sending process
- Tag is a user-defined integer to help the receiver keep track of different 

messages from a single source

Rank of Source node

tag

MPI_Recv (buff, 100, MPI_DOUBLE, Src, tag, MPI_COMM_WORLD, &status);
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Sending and Receiving messages: More Details

MPI_Status is a variable that contains information about the message that is received.  We can use it to find out information 
about the received message.  The most common usage is to find out how many items were in the message:

MPI_Status MyStat;        int count;      float buff[4];
int ierr = MPI_Recv(buf, 4, MPI_FLOAT, 2, 0, MPI_COMM_WORLD, &MyStat);   // receive message from node=2 with message tag = 0
If(ierr == MPI_SUCCESS) MPI_Get_Count(MyStat, MPI_FLOAT, &count);

For messages of a known size, we typically ignore the status, in which case use the parameter MPI_STATUS_IGNORE

int ierr = MPI_Recv(&buf, 4, MPI_FLOAT, 2, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

int MPI_Send (void* buf, int count,
MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm) 

int MPI_Recv (void* buf, int count,
MPI_Datatype datatype, int source,
int tag, MPI_Comm comm,
MPI_Status* status)
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Exercise: Ping-Pong Program
• Goal

– Measure the latency of our communication network.

• Program
– Create a program to bounce a message between a pair of processes.  Bounce the message back and 

forth multiple times and report the average on-way communication time.   Figure out how to use this so 
called “ping-pong” program to measure the latency of communication on your system.

#include <mpi.h>
int size, rank, argc;   char **argv;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
double MPI_Wtime();
MPI_Finalize();

MPI Data Type C Data Type
MPI_DOUBLE double

MPI_FLOAT float

MPI_INT int

MPI_LONG long

int MPI_Send (void* buf, int count,MPI_Datatype datatype, int dest,int tag, MPI_Comm comm) 

int MPI_Recv (void* buf, int count,MPI_Datatype datatype, int source,int tag, 
MPI_Comm comm, MPI_Status* status)
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Solution: Ping-Pong Program
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#define VAL 42
#define NREPS 10
#define TAG 5

int main(int argc, char **argv)  {
int rank, size;
double t0;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

int bsend = VAL;
int brecv = 0;
MPI_Status stat;
if(rank == 0) t0 = MPI_Wtime();

for(int i=0;i<NREPS; i++){
if(rank == 0){

MPI_Send(&bsend, 1, MPI_INT, 1, TAG, MPI_COMM_WORLD);
MPI_Recv(&brecv, 1, MPI_INT, 1, TAG, MPI_COMM_WORLD, &stat);
if(brecv != VAL)printf("error: interation %d %d != %d\n",i,brecv,VAL);
brecv = 0;

}
else if(rank == 1){

MPI_Recv(&brecv, 1, MPI_INT, 0, TAG, MPI_COMM_WORLD, &stat);
MPI_Send(&bsend, 1, MPI_INT, 0, TAG, MPI_COMM_WORLD);
if(brecv != VAL)printf("error: interation %d %d != %d\n",i,brecv,VAL);
brecv = 0;

}
}
if(rank == 0){

double t = MPI_Wtime() - t0;
double lat = t/(2*NREPS);
printf(" lat = %f seconds\n",(float)lat);

}
MPI_Finalize();

}



MPI Data Types for C

MPI Data Type C Data Type
MPI_BYTE

MPI_CHAR signed char
MPI_DOUBLE double
MPI_FLOAT float
MPI_INT int
MPI_LONG long
MPI_LONG_DOUBLE long double
MPI_PACKED

MPI_SHORT short
MPI_UNSIGNED_SHORT unsigned short
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long
MPI_UNSIGNED_CHAR unsigned char

MPI provides 
predefined data 
types that must be 
specified when 
passing messages.
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• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments
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Buffers
• Message passing is straightforward, but there are subtleties

– Buffering and deadlock
– Deterministic execution
– Performance 

• When you send data, where does it go?  One possibility is:
Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

Derived from slides provided by Bill Gropp of UIUC
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Blocking Send-Receive Timing Diagram 
(Receive before Send)

send side                               receive side

MPI_Send:  T1

T4: MPI_Recv returns

MPI_Send returns T2

Once receive
is called @ T0,
Local buffer unavailable
to user

Local buffer filled and 
available to user

It is important to post the receive before 
sending, for highest performance. 

T0: MPI_Recv

Local 
buffer can
be reused

T3: Transfer Complete

time time
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• Send a large message from process 0 to process 1
– If there is insufficient storage at the destination, the send must 

wait for the user to provide the memory space (through a 
receive)

• What happens with this code?

Sources of Deadlocks

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

• This code could deadlock … it depends on the 
availability of system buffers in which to store the 
data sent until it can be received 

Slide source: based on slides from Bill Gropp, UIUC



47

Some Solutions to the “deadlock” Problem

• Order the operations more carefully:

• Supply receive buffer at same time as send:

Process 0

Send(1)
Recv(1)

Process 1

Recv(0)
Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

Slide source: Bill Gropp, UIUC
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More Solutions to the “unsafe” Problem

• Supply a sufficiently large buffer in the send function

• Use non-blocking operations:

Process 0

Bsend(1)
Recv(1)

Process 1

Bsend(0)
Recv(0)

Process 0

Isend(1)
Irecv(1)
Waitall

Process 1

Isend(0)
Irecv(0)
Waitall

Slide source: Bill Gropp, UIUC
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Non-Blocking Communication

• Non-blocking operations return immediately and pass ‘‘request handles” that 
can be waited on and queried

– MPI_Isend( start, count, datatype, dest, tag, comm, request )
– MPI_Irecv( start, count, datatype, src, tag, comm, request )
– MPI_Wait( request, status )

• One can also test without waiting using  MPI_TEST
– MPI_Test( request, flag, status )

• Anywhere you use MPI_Send or  MPI_Recv, you can use the pair of 
MPI_Isend/MPI_Wait or  MPI_Irecv/MPI_Wait

• Note the MPI types:
MPI_Status status;  // type used with the status output from recv
MPI_Request request;  // the type of the handle used with isend/ircv

Non-blocking operations are extremely important … they 
allow you to overlap computation and communication.
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buffer unavailable 
to user

Non-Blocking Send-Receive Diagram

send side             receive side

MPI_Isend

T8: MPI_Wait returns

T3 buffer unavailable 
to user

receive buffer 
filled and available 

to the user

T0: MPI_Irecv

T7: transfer finishes

T4: MPI_Wait called

Sender completes

T1: MPI_Irecv Returns

T5

tim
e

tim
e

T2
MPI_Isend returns

T6
T9

MPI_Wait

MPI_Wait returns

buffer available 
to user
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Exercise: Ring program
• Start with the basic ring program we provide.  Run it for a range of message sizes 

and notes what happens for large messages.
– It may deadlock if the network stalls due to there being no place to put a message (i.e. 

no receives in place so the send blocking on when its buffer can be reused hangs).
• Try to make it more stable for large messages by:

– Split-phase … have the nodes “send than receive” while the other half “receive then 
send”.

– Sendrecv … a collective communication send/receive.
– Isend/Irecv … nonblocking send receive

double *buff;     int buff_count, to, from, tag=3;   MPI_Status stat;

MPI_Recv (buff, buff_count, MPI_DOUBLE, from, tag, MPI_COMM_WORLD, &stat);
MPI_Send (buff, buff_count, MPI_DOUBLE, to,     tag,  MPI_COMM_WORLD);
MPI_Isend( Buff, count, datatype, dest, tag, comm, request )
MPI_Irecv( Buff, count, datatype, src, tag, comm, request )
MPI_Wait( request, status )
MPI_Sendrecv (snd_buff,  buff_count, MPI_DOUBLE, to, tag,

rcv_buf,     buff_count, MPI_DOUBLE, to, tag, MPI_COMM_WORLD, &stat);
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Example: shift messages around a ring (part 1 of 2)
#include <stdio.h>
#include <mpi.h>

int main(int argc, char **argv)
{

int num, rank, size, tag, next, from;
MPI_Status status1, status2;
MPI_Request req1, req2;

MPI_Init(&argc, &argv);
MPI_Comm_rank( MPI_COMM_WORLD, &rank);
MPI_Comm_size( MPI_COMM_WORLD, &size);
tag = 201;
next = (rank+1) % size;
from = (rank + size - 1) % size;
if (rank == 0) {

printf("Enter the number of times around the ring: ");
scanf("%d", &num);

printf("Process %d sending %d to %d\n", rank, num, next);
MPI_Isend(&num, 1, MPI_INT, next, tag, 

MPI_COMM_WORLD,&req1);
MPI_Wait(&req1, &status1);

} 

do {
MPI_Irecv(&num, 1, MPI_INT, from, tag, 

MPI_COMM_WORLD, &req2);
MPI_Wait(&req2, &status2);

if (rank == 0) {
num--;
printf("Process 0 decremented number\n");

}

printf("Process %d sending %d to %d\n", rank, num, next);
MPI_Isend(&num, 1, MPI_INT, next, tag, 

MPI_COMM_WORLD, &req1);
MPI_Wait(&req1, &status1);

} while (num != 0);

if (rank == 0) {
MPI_Irecv(&num, 1, MPI_INT, from, tag, 

MPI_COMM_WORLD, &req2);
MPI_Wait(&req2, &status2);

}
MPI_Finalize();
return 0;

} 
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Outline

• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments
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Example: finite difference methods

• Solve the heat diffusion equation in 1 D:
– u(x,t) describes the temperature field
– We set the heat diffusion constant to one
– Boundary conditions, constant u at endpoints.

ihxxi += 0

t
u

x
u

¶
¶

=
¶
¶

2

2

n map onto a mesh with stepsize h and k

n Central difference approximation for spatial 
derivative (at fixed time) 2

11
2

2 2
h

uuu
x
u jjj -+ +-

=
¶
¶

iktti += 0

n Time derivative at t = tn+1
k
uu

dt
du nn -

=
+1
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Example: Explicit finite differences
• Combining time derivative expression using spatial derivative at t = tn

2
11

1 2
h

uuu
k
uu n

j
n
j

n
j

n
j

n
j -+
+ +-

=
-

n Solve for u at time n+1 and step j

n The solution at t = tn+1 is determined explicitly from the solution at t = tn
(assume u[t][0] = u[t][N] = Constant for all t).

n
j

n
j

n
j

n
j ruruuru 11
1 )21( +-
+ ++-=

2h
kr =

for (int t = 0; t < N_STEPS-1; ++t)
for (int x = 1; x < N-1; ++x)

u[t+1][x] = u[t][x] + r*(u[t][x+1] - 2*u[t][x] + u[t][x-1]);

n Explicit methods are easy to compute … each point updated based on nearest 
neighbors.  Converges for r<1/2.
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Heat Diffusion equation 

infinitesimally narrow rod (~one D)

“infinite” heat 
bath (fixed 

temperature, 
T2)

“infinite” heat 
bath (fixed 

temperature, 
T1)

T2T1



57

Heat Diffusion equation 

infinitesimally narrow rod (~one D)

T2T1

Pictorially, you are sliding a three 
point “stencil” across the domain 
(u[t]) and computing a new value of 
the center point (u[t+1]) at each stop.
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Heat Diffusion equation 

int main()
{

double *u   = malloc (sizeof(double) * (N));    
double *up1 = malloc (sizeof(double) * (N));

initialize_data(uk, ukp1, N, P); // init to zero, set end temperatures
for (int t = 0; t < N_STEPS; ++t){

for (int x = 1; x < N-1; ++x)
up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

temp = up1; up1 = u; u = temp;
}

return 0;

T2T1

A well known trick with 2 arrays so I 
don’t overwrite values from step k-1 
as I fill in for step k

Note: I don’t need the 
intermediate “u[t]” values 

hence “u” is just indexed by x.
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Heat Diffusion equation 

int main()
{

double *u   = malloc (sizeof(double) * (N));    
double *up1 = malloc (sizeof(double) * (N));

initialize_data(uk, ukp1, N, P); // init to zero, set end temperatures
for (int t = 0; t < N_STEPS; ++t){

for (int x = 1; x < N-1; ++x)
up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

temp = up1; up1 = u; u = temp;
}

return 0;

T2T1

How would 
you 
parallelize 
this program?
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Heat Diffusion equation 

T2T1

• Start with our original picture of the problem … a one 
dimensional domain with end points set at a fixed 
temperature.
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Heat Diffusion equation 

T2T1

• Break it into chunks assigning one chunk to each process.

P0 P1 P2 P3
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Heat Diffusion equation 

T2T1

• Each process works on it’s own chunk … sliding the stencil 
across the domain to updates its own data.

P0 P1 P2 P3
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Heat Diffusion equation 

T2T1

• What about the ends of each chunk … where the stencil will 
run off the end and hence have missing values for the 
computation?

?
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Heat Diffusion equation 

T2T1

• We add ghost cells to the ends of each chunk, update them 
with the required values from neighbor chunks at each time 
step … hence giving the stencil everything it needs on any 
given chunk to update all of its values.

Ghost 
cell

Ghost 
cell
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Heat Diffusion MPI Example 

MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &P);
MPI_Comm_rank (MPI_COMM_WORLD, &myID);
double *u   = malloc (sizeof(double) * (2 + N/P))  // include "Ghost Cells"
double *up1 = malloc (sizeof(double) * (2 + N/P)); // to hold values

// from my neighbors
initialize_data(uk, ukp1, N, P);
for (int t = 0; t < N_STEPS; ++t){

if (myID != 0)  MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD);
if (myID != P-1) MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status);
if (myID != P-1) MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD);
if (myID != 0)   MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status);

for (int x = 2; x < N/P; ++x)
up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

if (myID != 0)
up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]);  

if (myID != P-1)
up1[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);

temp = up1; up1 = u; u = temp;

} // End of for (int t ...) loop

MPI_Finalize();
return 0;

We write/explain 
this part first and 
then address the 
communication 
and data 
structures
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Heat Diffusion MPI Example 
// Compute interior of each “chunk”

for (int x = 2; x < N/P; ++x)
up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

// update edges of each chunk keeping the two far ends fixed 
// (first element on Process 0 and the last element on process P-1). 

if (myID != 0)
up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]);  

if (myID != P-1)
up1[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);

// Swap pointers to prepare for next iterations
temp = up1; up1 = u; u = temp;

} // End of for (int t ...) loop

MPI_Finalize();
return 0;

Note I was lazy and assumed N was evenly 
divided by P.  Clearly, I’d never do this in a 
“real” program.

Update array values using local data 
and values from ghost cells.

u[0] and 
u[N/P+1] are the 

ghost cells
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Heat Diffusion MPI Example 
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &P);
MPI_Comm_rank (MPI_COMM_WORLD, &myID);
double *u   = malloc (sizeof(double) * (2 + N/P))  // include "Ghost Cells"
double *up1 = malloc (sizeof(double) * (2 + N/P)); // to hold values

// from my neighbors
initialize_data(uk, ukp1, N, P);
for (int t = 0; t < N_STEPS; ++t){

if (myID != 0)
MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD);

if (myID != P-1)
MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status);

if (myID != P-1)
MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD);

if (myID != 0)
MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status);

/* continued on previous slide */

1D PDE solver … the simplest “real” message 
passing code I can think of. Note: edges of 
domain held at a fixed temperature

Send my “left” boundary value to the neighbor on my “left’

Receive my “right” ghost cell from the neighbor to my “right’

Send my “right” boundary value  to the neighbor to my “right’

Receive my “left” ghost cell from the neighbor to my “left”
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The Geometric Decomposition Pattern

T2T1

Ghost 
cell

Ghost 
cell

§ This is an instance of a very important design pattern … the Geometric 
decomposition pattern.
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Partitioned Arrays

• Realistic problems are 2D or 3D; require 
more complex data distributions.

• We need to parallelize the computation by 
partitioning this index space

• Example: Consider a 2D domain over 
which we wish to solve a PDE using an 
explicit finite difference solver .  The figure 
shows a five point stencil … update a 
value based on its value and its 4 
neighbors.

• Start with an array à
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Partitioned Arrays: Column block distribution

• Split the non-unit-stride dimension (P-1) times to produce P chunks, assign the ith chunk 
to Pi. WIth N = n * n, P = p * p

• In a 2D finite-differencing program (exchange edges), how much do we have to 
communicate? 2*n = 2*sqrt(N) messages per processor

UE = unit of 
execution … think of 
it as a generic term 
for “process or 
thread”

P is the
# of 
processors
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Partitioned Arrays: Block distribution
• If we parallelize in both dimensions, then we have (n/p)2 elements per processor, and 

we need to send 4*(n/p) = 4 *sqrt(N/P) messages from each processor. 
Asymptotically better than 2*sqrt(N).

P is the
# of 
processors
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Partitioned Arrays: block cyclic distribution

• LU decomposition (A= LU) .. Move down the 
diagonal transform rows to “zero the column” below 
the diagonal.

§ Zeros fill in the right lower triangle of the 
matrix … less work to do. 

§ Balance load with cyclic distribution  of 
blocks of A mapped onto a grid of nodes 
(2x2 in this  case … colors show the 
mapping to nodes).  

* * ** * * * *
0 * ** * * * *
0 0 ** * * * *
0 0 *0 * * * *
0 0 *0 * * * *
0 0 *0 * * * *
0 0 *0 * * * *
0 0 *0 * * * *
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Outline

• MPI and distributed memory systems

• The Bulk Synchronous Pattern and MPI collective operations

• Introduction to message passing

• The diversity of message passing in MPI

• Geometric Decomposition and MPI

• Concluding Comments



The 12 core functions in MPI
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• MPI_Init
• MPI_Finish
• MPI_Comm_size
• MPI_Comm_rank
• MPI_Send
• MPI_Recv
• MPI_Reduce
• MPI_Isend
• MPI_Irecv
• MPI_Wait
• MPI_Wtime
• MPI_Bcast



The 12 core functions in MPI
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• MPI_Init
• MPI_Finish
• MPI_Comm_size
• MPI_Comm_rank
• MPI_Send
• MPI_Recv
• MPI_Reduce
• MPI_Isend
• MPI_Irecv
• MPI_Wait
• MPI_Wtime
• MPI_Bcast

10

Real Programmers always try to overlap 
communication and computation .. Post your 
receives using MPI_Irecv() then where 
appropriate, MPI_Isend(). 
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Does a shared address space make 
programming easier?  

Time

Effort

Extra work upfront,  but easier 
optimization and debugging means 

overall, less time to solution
Message passing

Time

Effort

initial parallelization can be 
quite easy 

Multi-threading

But difficult debugging and 
optimization means overall 

project takes longer 

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica,  vol. 35 pp. 321–345, 
2003

Proving that a shared address space program using 
semaphores is race free is an NP-complete problem*
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MPI References

• The Standard itself:
–at http://www.mpi-forum.org
–All MPI official releases, in both postscript and HTML

• Other information on Web:
–at http://www.mcs.anl.gov/mpi
–pointers to lots of stuff, including other talks and 

tutorials, a FAQ, other MPI pages

http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
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Books for learning MPI

• Using MPI-2:  Portable Parallel Programming 
with the Message-Passing Interface, by Gropp, 
Lusk, and Thakur, MIT Press, 1999..

§ Parallel Programming with MPI, by Peter Pacheco, 
Morgan-Kaufmann, 1997.

§ Patterns for Parallel Programing, by Tim Mattson, 
Beverly Sanders, and Berna Massingill.
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Backup

• Mixing OpenMP and MPI

• Loading MPI on your system
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How do people mix MPI and OpenMP?

Replicate the program.

Add glue code

Break up the data

A sequential program 
working on a data set

•Create the MPI program 
with its data decomposition.

• Use OpenMP inside each 
MPI process.
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Pi program with MPI and OpenMP

#include <mpi.h>
#include “omp.h”
void main (int argc, char *argv[])
{

int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ;
step = 1.0/(double) num_steps ;
MPI_Init(&argc, &argv) ;
MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
my_steps = num_steps/numprocs ;

#pragma omp parallel for reduction(+:sum) private(x)
for (i=my_id*my_steps; i<(m_id+1)*my_steps ; i++)
{

x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
sum *= step ; 
MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 
MPI_COMM_WORLD) ;

}

Get the MPI 
part done 
first, then 
add OpenMP 
pragma 
where it 
makes sense 
to do so
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Key issues when mixing OpenMP and MPI

1. Messages are sent to a process not to a particular thread.
– Not all MPIs are threadsafe.  MPI 2.0 defines threading modes:

– MPI_Thread_Single: no support for multiple threads
– MPI_Thread_Funneled: Mult threads, only master calls MPI
– MPI_Thread_Serialized: Mult threads each calling MPI, but they 

do it one at a time.
– MPI_Thread_Multiple: Multiple threads without any restrictions

– Request and test thread modes with the function:
MPI_init_thread(desired_mode, delivered_mode, ierr)

2. Environment variables are not propagated by mpirun.  You’ll 
need to broadcast OpenMP parameters and set them with 
the library routines.
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Dangerous Mixing of MPI and OpenMP

• The following will work only if MPI_Thread_Multiple is supported … a 
level of support I wouldn’t depend on.

MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;
#pragma omp parallel 
{

int tag, swap_neigh, stat, omp_id = omp_thread_num();
long buffer [BUFF_SIZE], incoming [BUFF_SIZE];
big_ugly_calc1(omp_id, mpi_id, buffer);

// Finds MPI id and tag so
neighbor(omp_id, mpi_id, &swap_neigh, &tag);  // messages don’t conflict

MPI_Send (buffer,   BUFF_SIZE, MPI_LONG, swap_neigh, 
tag, MPI_COMM_WORLD);

MPI_Recv (incoming, buffer_count, MPI_LONG, swap_neigh, 
tag,  MPI_COMM_WORLD, &stat);

big_ugly_calc2(omp_id, mpi_id, incoming, buffer);
#pragma critical

consume(buffer, omp_id, mpi_id);
}
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Messages and threads
• Keep message passing and threaded sections of your program 

separate:
– Setup message passing outside OpenMP parallel regions (MPI_Thread_funneled)
– Surround with appropriate directives (e.g. critical section or master) 

(MPI_Thread_Serialized)
– For certain applications depending on how it is designed it may not matter which 

thread handles a message.  (MPI_Thread_Multiple)
–Beware of race conditions though if two threads are probing on the 

same message and then racing to receive it.
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Safe Mixing of MPI and OpenMP
Put MPI in sequential regions

MPI_Init(&argc, &argv) ;      MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;

// a whole bunch of initializations

#pragma omp parallel for 
for (I=0;I<N;I++) {

U[I] =  big_calc(I);
}

MPI_Send (U,   BUFF_SIZE, MPI_DOUBLE, swap_neigh, 
tag, MPI_COMM_WORLD);

MPI_Recv (incoming, buffer_count, MPI_DOUBLE, swap_neigh, 
tag,  MPI_COMM_WORLD, &stat);

#pragma omp parallel for 
for (I=0;I<N;I++) {

U[I] =  other_big_calc(I, incoming);
}

consume(U, mpi_id);

!"#$%&#'(()*+",-&."/*
0123!$."'435-%%"("46*7-8*2*
$'9"*%"9".*$'4*'*:.;7("<*=&8$*
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Safe Mixing of MPI and OpenMP
Protect MPI calls inside a parallel region

MPI_Init(&argc, &argv) ;      MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;

// a whole bunch of initializations

#pragma omp parallel
{
#pragma omp for

for (I=0;I<N;I++)    U[I] =  big_calc(I);

#pragma master
{

MPI_Send (U,   BUFF_SIZE, MPI_DOUBLE, neigh, tag,  MPI_COMM_WORLD);
MPI_Recv (incoming, count, MPI_DOUBLE, neigh,  tag,  MPI_COMM_WORLD,  &stat);

}
#pragma omp barrier
#pragma omp for 

for (I=0;I<N;I++)   U[I] =  other_big_calc(I, incoming);

#pragma omp master
consume(U, mpi_id);

}

!"#$%&#'(()*+",-&."/*
0123!$."'435-%%"("46*7-8*2*
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Hybrid OpenMP/MPI works, but is it worth it?

• Literature* is mixed on the hybrid model: sometimes its better, sometimes 
MPI alone is best.

• There is potential for benefit to the hybrid model
– MPI algorithms often require replicated data making them less memory 

efficient.
– Fewer total MPI communicating agents means fewer messages and less 

overhead from message conflicts.
– Algorithms with good cache efficiency should benefit from shared caches of 

multi-threaded programs.
– The model maps perfectly with clusters of SMP nodes.

• But really, it’s a case by case basis and to large extent depends on the 
particular application.

!"#$%&'()*+,$)*&$-')./)*0$1223
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Backup

• Mixing OpenMP and MPI

• Loading MPI on your system
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MPIch library on Apple Laptops: MacPorts

• To use MPI on your Apple laptop:
– Download Xcode.  Be sure to choose the command line tools that match your OS.
– Install MacPorts (if you haven’t already … use the installer for your OS from macports.org).

sudo port selfupdate

sudo port install mpich-gcc9

mpicc hello.c

mpiexec –n 4 ./a.out

Update to latest version of 
MacPorts

Graph the library that matches the 
version of your gcc compiler.

Test the installation with a simple 
program


