
1
1

A really Brief (and rambling)
Introduction to Parallel

Computing

Tim Mattson
Intel Corp.

timothy.g.mattson@ intel.com

2

Why should you care about parallel
programming?

3

Moore's Law

Moore’s Law

Slide source: UCB CS 194 Fall’2010

• In 1965, Intel co-founder Gordon Moore predicted (from just 3 data
points!) that semiconductor density would double every 18 months.
– He was right! Over the last 50 years, transistor densities have

increased as he predicted.

5

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

A
X-

11
/7

80
)

25%/year

52%/year

??%/year

The good old days …

From Hennessy and Patterson, Computer Architecture: A
Quantitative Approach, 4th edition, Sept. 15, 2006

Vax “Star”, CISC
Vax-11/780

Vax “Nautilus”,
CISC, Vax 8700

Sparc V7 RISC
5-stage
Sun 4/260
16.7 MHz PowerPC 604, 100

MHz
7 stage, 4 issue

Pentium 4, 3.6 GHz,
31 stage, 6 uop
issue, 3 CISC issue

Third party names are the property of their owners.

(SPECint)
Uniproccessor
Performance

Pentium 4, 3.0 GHz,
20 stage, 3 CISC
issue (6 uop issue)

The Hardware/Software contract

• Write your software as
you choose and the
HW-geniuses will take
care of performance.

6

• The result: Generations of performance ignorant software engineers using
performance-handicapped languages (such as Python) … which was OK
since performance was a HW job.

Third party names are the property of their owners.

Why the drop off in performance?
Dennard Scaling:
• Transistors shrink, circuit delays go

down, frequency goes up, power per
transistor goes down.

• Result … if transistor density
doubles, circuit is 40% faster for
twice as many transistors for fixed
power.

Dennard scaling considers
“dynamic effects” driven by
frequency. It assumes static
effects such as leakage are
negligible.
• As transister densities climb, these

static effects DO NOT scale and
eventually dominate.

7

• The problem isn’t the end of Moore’s law. The problem is the end of Dennard
scaling. This means with new generations of process technology, chip frequency
no longer improves. The free lunch is over.

Third party names are the property of their owners.

8

Modern design emphasizes Power consumption.
Power vs Performance (normalized to i486 process tech.)

0

5

10

15

20

25

30

0 2 4 6 8
Scalar Performance

Po
w

er power = perf ^ 1.74

Pentium M

i486 Pentium

Pentium Pro

Pentium 4 (Wmt)

Pentium 4 (Psc)

Growth in power
is unsustainable

Source: Ed Grochowski, Intel

9

Modern design emphasizes Power consumption.
Power vs Performance (normalized to i486 process tech.)

0

5

10

15

20

25

30

0 2 4 6 8
Scalar Performance

Po
w

er power = perf ^ 1.74

Pentium M

i486 Pentium

Pentium Pro

Pentium 4 (Wmt)

Pentium 4 (Psc)

Mobile CPUs
with shallow
pipelines use

less power

31 Pipeline
stages

<20 Pipeline
stages

Source: Ed Grochowski, Intel

Consider power in a chip …

Processor

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

C = capacitance … it measures the
ability of a circuit to store energy:

C = q/V à q = CV

Work is pushing something (charge or q)
across a “distance” … in electrostatic
terms pushing q from 0 to V:

V * q = W.

But for a circuit q = CV so

W = CV2

power is work over time … or how many
times in a second we oscillate the circuit

Power = W* F à Power = CV2f

... Reduce power by adding cores

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W.,
"Optimizing power using transformations," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995

Source:
Vishwani Agrawal

Processor

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

f * time

Processor

f/2

Processor

f/2

Input

Output

Capacitance = 2.2C
Voltage = 0.6V
Frequency = 0.5f
Power = 0.396CV2f

f * time

... Many core: we are all doing it

PCIe QPI

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache
(45MB)

Memory Controller

buffered switch

buffered switch

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache

HSW

Memory
Controller

HSW

GPU

CPU

The result…

13

+

=
A new HW/SW contract … HW people will do
what’s natural for them (lots of cores) and
optimization is up to SW people who will have to
adapt (rewrite everything)

Core concepts in parallel programming

14

Let’s agree on a few definitions:

• Task:
– A specific sequence of instructions plus a data environment. A program is

composed of one or more tasks.
• Active task:
– A task that is available to be scheduled for execution. When the task is moving

through its sequence of instructions, we say it is making forward progress
• Fair scheduling:
– When a scheduler gives each active task an equal opportunity for execution.

15

• Computer:
– A machine that transforms

input data into output data.
– Typically a computer consists

of Control, Arithmetic/Logic,
and Memory units.

– The transformation is defined
by a stored program (von
Neumann architecture).

Concurrency vs. Parallelism
• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active and

unordered. If scheduled fairly, they can be described as logically making
forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making
forward progress at the same time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

Concurrent, parallel Execution

Concurrent, non-parallel Execution
PE0

PE0

PE1

PE1

PE2

PE3

Time
PE = Processing Element

Concurrency vs. Parallelism
• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active

and unordered. If scheduled fairly, they can be described as logically
making forward progress at one time.
– Parallelism: A condition of a system in which multiple tasks are actually

making forward progress at one time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

In most cases, parallel programs
exploit concurrency in a problem to
run tasks on multiple processing
elements

We use Parallelism to:
• Do more work in less time
• Work with larger problems

Programs

Concurrent
Programs

Parallel
Programs

If tasks execute in “lock step” they are not concurrent,
but they are still parallel. Example … a SIMD unit.

18

Consider performance of parallel programs

Load Data Compute T1 Consume Results Compute TN
…

Timeseq(1) = Tload + N*Ttask + Tconsume

Compute N independent tasks on one processor

Ideally Cut
runtime by ~1/P
(Note: Parallelism
only speeds-up the
concurrent part)

…

Timepar(P) = Tload + (N/P)*Ttask + Tconsume

Compute N independent tasks with P processors

Load Data

Compute T1

Compute TN

Consume Results

Talking about performance

§Speedup: the increased
performance from running on P
processors.)(

)1(
)(

PTime
Time

PS
par

seq=

PPS =)(

PPS >)(

n Perfect Linear Speedup:
happens when no parallel
overhead and algorithm is
100% parallel.

n Super-linear Speedup: typically
due to cache effects … i.e. as P
grows, aggregate cache size
grows so more of the problem
fits in cache

So now you should understand my silly introduction slide.

20

We measure our
success as parallel
programmers by how
close we come to ideal
linear speedup.

A good parallel
programmer always
figures out when you
fall off the linear
speedup curve and
why that has
occurred.

Amdahl’s Law
• What is the maximum speedup you can expect from a parallel program?
• Approximate the runtime as a part that can be sped up with additional

processors and a part that is fundamentally serial.

seqpar Time
P
fractionparallelfractionserialPTime *)__()(+=

• If you had an unlimited number of processors:

• If serial_fraction is a and parallel_fraction is (1- a) then the speedup is:

S(P) =
Timeseq

Timepar (P)
=

Timeseq
(α +1−α

P
)*Timeseq

=
1

α +
1−α
P

¥®P

• The maximum possible speedup is:
a
1

=S Amdahl’s
Law

Acknowledgement: , 2009 DAC Tutorial – Tom Spyrou
22

Implications of Amdahl’s Law

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

1 2 3 4 5 6

90%
50%
20%
10%

Number of cores

n Consider benefits of adding processors to your parallel program for different
serial fractions.

n Note: getting a serial fraction under 10% is challenging for the typical
application

Speedup

Serial
Fraction

Weak Scaling: a response to Amdhal
• Gustafson's Observation: For many problems, as the size of

the problem (N) grows, the serial fraction (a(N)) decreases.
What does this imply for the speedup (S(P,N))?

§ In other words … if parallelizable computations asymptotically dominate the
runtime, then solving a larger problem will increase your Amdahl-limited
speedup.

§ Weak Scaling: Performance of an application when the problem size
increases with the number of processors (fixed size problem per node)

0)(lim
arg

=
®

N
elNN
a

PNPS el ®),(arg

)1(*))(1)((

)1(
),(

seq

seq

T
P
NN

T
NPS aa -

+
=

History of parallel computing systems

24

Parallel computing: It’s old

25
Late 70’s

Cray 1 (1976) Cray 2 (1985) Cray C-90 (1991)

Cosmic cube (1983) Paragon (1993)

ASCI Red (1997)

Clusters (late 80’s)

Late 80’s Late 90’s

Vector Computers

SMP computers

Cluster Computers

Massively Parallel Processors (MPP)

Linux PC Clusters
(~1995)

Third party names are the property of their owners.

The birth of Supercomputing

• The CRAY-1A:
– 2.5-nanosecond clock,
– 64 vector registers,
– 1 million 64-bit words of high-

speed memory.
– Peak speed:
– 80 MFLOPS scalar.
– 250 MFLOPS vector (but this

was VERY hard to achieve)

• Cray software … by 1978
– Cray Operating System (COS),
– the first automatically vectorizing

Fortran compiler (CFT),
– Cray Assembler Language (CAL)

were introduced.

§ On July 11, 1977, the CRAY-1A, serial
number 3, was delivered to NCAR. The
system cost was $8.86 million ($7.9
million plus $1 million for the disks).

http://www.cisl.ucar.edu/computers/gallery/cray/cray1.jsp

0

10

20

30

40

50

60

Vector

History of Supercomputing:
The Era of the Vector Supercomputer
• Large mainframes that operated on vectors of data
• Custom built, highly specialized hardware and software
• Multiple processors in an shared memory configuration
• Required modest changes to software (vectorization)

The Cray C916/512 at the Pittsburgh
Supercomputer Center

C
ra

y
2

(4
),

19
85

C
ra

y
YM

P
(8

),
19

89

C
ra

y
T9

32
 (3

2)
, 1

99
6

Pe
ak

 G
FL

O
PS

C
ra

y
C

91
6

(1
6)

, 1
99

1

Vector

The attack of the killer micros

• The Caltech Cosmic
Cube developed by
Charles Seitz and
Geoffrey Fox in1981

• 64 Intel 8086/8087
processors

• 128kB of memory per
processor

• 6-dimensional
hypercube network

http://calteches.library.caltech.edu/3419/1/Cubism.pdf

The cosmic cube, Charles Seitz
Communications of the ACM, Vol 28, number 1 January
1985, p. 22

Launched the “attack of the killer
micros”
Eugene Brooks, SC’90

http://calteches.library.caltech.edu/3419/1/Cubism.pdf

Machine Model: Distributed Memory

• The new microprocessor based parallel computers were all
distributed memory machines.

• Each node has its own processors, memory and caches but
cannot directly access another node’s memory.

• Each “node” has a Network Interface component (NIC) for
all communication and synchronization.

• Fundamentally more scalable than shared memory
machines … especially cache coherent shared memory.

interconnect

P0

memory

NIC

. . .

P1

memory

NIC Pn

memory

NIC

0
20
40
60
80

100
120
140
160
180
200

Vector MPP

It took a while, but MPPs came to
dominate supercomputing

• Parallel computers with large numbers of microprocessors
• High speed, low latency, scalable interconnection networks
• Lots of custom hardware to support scalability
• Required massive changes to software (parallelization)

Paragon XPS-140 at Sandia
National labs in Albuquerque
NM

Pe
ak

 G
FL

O
PS

iP
SC

\8
60

(1
28

) 1
99

0.

Pa
ra

go
n

XP
S

19
93

TM
C

 C
M

5-
(1

02
4)

 1
99

2

Vector MPP

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Vector MPP CCOTS MPP

IB
M

 S
P/

57
2

(4
60

)
In

te
l T

FL
O

P,
 (

45
36

)

The cost advantage of mass market COTS

• MPPs using Mass market Commercial off the shelf (COTS)
microprocessors and standard memory and I/O components

• Decreased hardware and software costs makes huge
systems affordable

Pe
ak

 G
FL

O
PS

ASCI Red TFLOP Supercomputer

Vector MPP COTS MPP

The MPP future looked bright … but then clusters
took over
• A cluster is a collection of connected, independent computers that work in

unison to solve a problem.
• Nothing is custom … motivated users could build cluster on their own

§ First clusters appeared in
the late 80’s

§ The Intel Pentium Pro in
1995 coupled with Linux
made them competitive.
§ NASA Goddard’s Beowulf

cluster demonstrated
publically that high visibility
science could be done on
clusters.

§ Clusters made it easier to
bring the benefits due to
Moores’s law into working
supercomputers

Top 500 list: System Architecture

*

Constellation: A cluster where the number of cores on a node is greater than the number of nodes … a term only used by top500.

1995 2000 2005 2010 2015
0

10

20

30

40

50

60

70

80

90

100

2021

Clusters rule but what about parallelism
on each node of the cluster?

34

Hardware Diversity: Basic Building Blocks

ICache
Scheduler

CPU Core: one or more hardware threads sharing
an address space. Optimized for low latencies.

SIMD: Single Instruction Multiple Data.
Vector registers/instructions with 128 to 512 bits so a
single stream of instructions drives multiple data
elements.

SIMT: Single Instruction Multiple Threads.
A single stream of instructions drives many threads. More
threads than functional units. Over subscription to hide
latencies. Optimized for throughput.

Hardware Diversity: Combining building
blocks to construct nodes

LLC

LL
C

LLC

LLC

Multicore CPU

Heterogeneous: CPU+GPU
Heterogeneous:

Integrated CPU+GPU

Heterogeneous:
CPU + manycore coprocessor

Manycore CPU

Hardware diversity: CPUs
PCIe QPI

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache
(45MB)

Memory Controller

buffered switch

buffered switch

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache

HSW

Memory
Controller

HSW

Intel® Xeon® processor: multicore
E7 v3 series (Haswell or HSW)
• 18 cores
• 36 Hardware threads
• 256 bit wide vector units

In both cases … Cache hierarchy to
create a low latency, coherent
view of a shared address space.

Hardware diversity: GPUs
• Nvidia® GPUs are a collection of “Streaming Multiprocessors” (SM)

– Each SM is analogous to a core of a Multi-Core CPU
• Each SM is a collection of SIMD execution pipelines that share

control logic, register file, and L1 Cache#

#Source: UC Berkeley, CS194,
Fall’2014, Kurt Keutzer and Tim Mattson

For example: an NVIDIA
Tesla C2050 (Fermi) GPU
with 3GB of memory and
14 streaming
multiprocessor cores*.

*Source: http://www.nersc.gov/users/computational-systems/dirac/node-and-gpu-configuration/

Third party names are the property of their owners.

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

... Many core: we are all doing it

PCIe QPI

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache
(45MB)

Memory Controller

buffered switch

buffered switch

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache

HSW

Memory
Controller

HSW

GPU
• Hundreds of Cores Driven by a

single stream of instruction
• Each core has many (32, 64, …)

SIMD lanes
• Optimized for throughput …

oversubscription to hide memory
latency

CPU
• A few to dozens of Cores with

independent streams of
instructions.

• Cores typically have complex logic
(e.g. out of order) to make
individual threads run fast.

• Optimized for latency … complex
memory hierarchy to run fast out of
cache

It’s really about competing software platforms

PCIe QPI

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache
(45MB)

Memory Controller

buffered switch

buffered switch

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache

HSW

Memory
Controller

HSW

GPU
• Single Instruction multiple threads.

• turn loop bodies into kernels.
• HW intelligently schedules kernels

to hide latencies.
• Dogma: a natural way to express huge

amounts of data parallelism
• Examples: CUDA, OpenCL, OpenACC

CPU
• Shared Address space, multi-

threading.
• Many threads executing with

coherent shared memory.
• Dogma: The legacy programming

model people already knows. Easier
than alternatives.

• Examples: OpenMP, Pthreads, C++11
*third party names are the property of their owners

Back-up

• Memory Hierarchy
• Vector instructions
• Computer networks
• Design Patterns

41

Shared Memory (DRAM)

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core1

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

𝛾

𝛾 𝛾

𝛾 𝛾

𝛾

A variable is a name for a location in memory (DRAM).

Temporary copies of that variable may exist across the memory
hierarchy … and these temporary values may be different.

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$D
D

R
D

D
R

D
D

R
D

D
RPC

Ie

PC
Ie

Q
PI

Q
PI

Q
PI

Q
PI

sw
itc

h

sw
itc

h

sw
itc

h

sw
itc

h

Socket 0 Socket 1

L2$

L1D$ L1I$

ALU

HT1HT0 A node in Cori … A CPU
based supercomputer at
NERSC based on two
sockets of Xeon processors
with 32 cores per socket

A NUMA node

Back-up

• Memory Hierarchy
• Vector instructions
• Computer networks
• Design Patterns

44

Vector SIMD
• A functional unit typically associated with a CPU core takes a single

stream of instructions that are applied in parallel to the elements of
values in special vector registers.

• Vector instructions usually generated by the compiler “automatically”
from loops (often with help from programmer inserted directives).

• Best performance may require explicit coding with vector intrinsics.

+
X

Y

X + Y

+
x3 x2 x1 x0

y3 y2 y1 y0

x3+y3 x2+y2 x1+y1 x0+y0

X

Y

X + Y

Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation

Vector (SIMD) Programming

• Architects love vector units,
since they permit space- and
energy- efficient parallel
implementations.

• However, standard SIMD
instructions on CPUs are
inflexible, and can be difficult to
use.

• Options:
– Let the compiler do the job
– Assist the compiler with language

level constructs for explicit
vectoriztion.
– Use intrinsics … an assembly level

approach.

4 way SIMD (SSE) 16 way SIMD
(Xeon™ PHI)

Example Problem: Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx » p
i = 0

N

Mathematically, we know that:

We can approximate the integral as a
sum of rectangles:

Where each rectangle has width Dx and
height F(xi) at the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X0.0

48

Serial PI program

static long num_steps = 8388608;
float step;
int main ()
{ int i; float x, pi, sum = 0.0;

step = 1.0/(float) num_steps;

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

Normally, I’d use double types throughout to minimize roundoff errors
especially on the accumulation into sum. But to maximize impact of
vectorization for these exercise, we’ll use float types.

Compile as (O3 no-vec), 0.012 secs

49

Explicit Vectorization PI program

static long num_steps = 8388608;
float step;
int main ()
{ int i; float x, pi, sum = 0.0;

step = 1.0/(float) num_steps;
#pragma omp simd reduction(+:sum)
for (i=0;i< num_steps; i++){

x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

Note that literals (such as 4.0, 1.0 and 0.5) are not explicitly declared
with the desired type. The C language treats these as “double” and that
impacts compiler optimizations. We call this the default case.

Compile as (O3 no-vec), 0.012 secs
Compile as (O3), 0.012 secs

No vectorization
benefit . Why?

50

Explicit Vectorization PI program

static long num_steps = 8388608;
float step;
int main ()
{ int i; float x, pi, sum = 0.0;

step = 1.0f/(float) num_steps;
#pragma omp simd reduction(+:sum)
for (i=0;i< num_steps; i++){

x = (i+0.5f)*step;
sum = sum + 4.0f/(1.0f+x*x);

}
pi = step * sum;

}
Note that literals (such as 4.0, 1.0 and 0.5) are explicitly declared as type
float (to match the types of the variables in this code. This greatly
enhances vectorization and compiler optimization.

Literals as double (O3 no-vec), 0.012 secs
Literals as Float (O3 no-vec), 0.0042 secs
Literals as Float (O3), 0.0024 secs

51

Pi Program: Vectorization with intriniscs (SSE)
float pi_sse(int num_steps)
{ float scalar_one =1.0, scalar_zero = 0.0, ival, scalar_four =4.0, step, pi, vsum[4];

step = 1.0/(float) num_steps;

__m128 ramp = _mm_setr_ps(0.5, 1.5, 2.5, 3.5);
__m128 one = _mm_load1_ps(&scalar_one);
__m128 four = _mm_load1_ps(&scalar_four);
__m128 vstep = _mm_load1_ps(&step);
__m128 sum = _mm_load1_ps(&scalar_zero);
__m128 xvec; __m128 denom; __m128 eye;

for (int i=0;i< num_steps; i=i+4){ // unroll loop 4 times
ival = (float)i; // and assume num_steps%4 = 0
eye = _mm_load1_ps(&ival);
xvec = _mm_mul_ps(_mm_add_ps(eye,ramp),vstep);
denom = _mm_add_ps(_mm_mul_ps(xvec,xvec),one);
sum = _mm_add_ps(_mm_div_ps(four,denom),sum);

}
_mm_store_ps(&vsum[0],sum);
pi = step * (vsum[0]+vsum[1]+vsum[2]+vsum[3]);
return pi;

}

52

Pi Program: Vector intriniscs plus OpenMP
float pi_sse(int num_steps)

{ float scalar_one =1.0, scalar_zero = 0.0, ival, scalar_four =4.0, step, pi, vsum[4];
float local_sum[NTHREADS]; // set NTHREADS elsewhere, often to num of cores
step = 1.0/(float) num_steps; pi = 0.0;

#pragma omp parallel
{ int i, ID=omp_get_thread_num();

__m128 ramp = _mm_setr_ps(0.5, 1.5, 2.5, 3.5);
__m128 one = _mm_load1_ps(&scalar_one);
__m128 four = _mm_load1_ps(&scalar_four);
__m128 vstep = _mm_load1_ps(&step);
__m128 sum = _mm_load1_ps(&scalar_zero);
__m128 xvec; __m128 denom; __m128 eye;

#pragma omp for
for (int i=0;i< num_steps; i=i+4){

ival = (float)i;
eye = _mm_load1_ps(&ival);
xvec = _mm_mul_ps(_mm_add_ps(eye,ramp),vstep);
denom = _mm_add_ps(_mm_mul_ps(xvec,xvec),one);
sum = _mm_add_ps(_mm_div_ps(four,denom),sum);

}
_mm_store_ps(&vsum[0],sum);
local_sum[ID] = step * (vsum[0]+vsum[1]+vsum[2]+vsum[3]);

}
for(int k = 0; k<NUM_THREADS;k++) pi+=local_sum[k];

return pi;
}

To parallelize with OpenMP:
1. Promote local_sum to an

array to there is a variable
private to each thread but
available after the parallel
region

2. Add parallel region and
declare vector registers
inside the parallel region
so each thread has their
own copy.

3. Add workshop loop (for)
construct

4. Add local sums after the
parallel region to create
the final value for pi

53

PI program Results: The details
4194304 steps Times in Seconds (50 runs, min time reported)

0

0.001

0.002

0.003

0.004

0.005

0.006

Base: lits
float -no-vec

Lits float,
autovrec

List Float,
OMP SIMD

Lits Float,
OMP SIMD

Par For

SSE SSE, OMP
par for

run times(sec)

– Intel Core i7, 2.2 Ghz, 8 GM 1600 MHz DDR3, Apple MacBook Air OS X 10.10.5.
– Intel(R) C Intel(R) 64 Compiler XE for applications running on Intel(R) 64, Version 15.0.3.187 Build 20150408

Float, autovec, 0.0023 secs
Float, OMP SIMD, 0.0028 secs
Float, SSE, 0.0016 secs

Explicit Vectorization – Performance Impact

3.66x

2.04x 2.13x

4.34x

1.47x

2.40x

0.00x

0.50x

1.00x

1.50x

2.00x

2.50x

3.00x

3.50x

4.00x

4.50x

5.00x

Mandelbrot Volume
Rendering

BlackScholes Fast Walsh Perlin Noise SGpp

R
el

at
iv

e
Sp

ee
d-

up
(h

ig
he

r i
s

be
tte

r)

ICC auto-vec

ICC SIMD directive

Source: M. Klemm, A. Duran, X. Tian, H. Saito, D. Caballero, and X. Martorell, “Extending
OpenMP with Vector Constructs for Modern Multicore SIMD Architectures. In Proc. of the Intl.
Workshop on OpenMP”, pages 59-72, Rome, Italy, June 2012. LNCS 7312.

Explicit Vectorization looks better when you move to more complex problems.

Back-up

• Memory Hierarchy
• Vector instructions
• Computer networks
• Design Patterns

55

An early focus on networks
• Early machines were:
– Collection of microprocessors.
– Communication was performed using bi-directional queues

between nearest neighbors.
• Messages were forwarded by processors on path.
– “Store and forward” networking

• There was a strong emphasis on topology in algorithms,
in order to minimize the number of hops.

Properties of a Network: Bisection Bandwidth:
• Bisection bandwidth: bandwidth across smallest cut that

divides network into two equal halves
• Bandwidth across “narrowest” part of the network

bisection
cut

not a
bisection
cut

bisection bw= link bw bisection bw = sqrt(n) * link bw

• Bisection bandwidth is important for algorithms in which
all processors need to communicate with all others

Early Networks for connecting processors
• Hpercube: Number of nodes N = 2d for dimension d.
– Diameter = d.
– Bisection bandwidth = N/2.

0d 1d 2d 3d 4d

• Popular in early machines
– Lots of clever algorithms.

• Greycode addressing:
– Each node connected to

d others with 1 bit different. 001000

100

010 011

111

101

110

Meshes and Tori
Two dimensional mesh
• Diameter = 2 * (sqrt(N) – 1)
• Bisection bandwidth = sqrt(N)

• Intel MPPs from Delta on used a 2D mesh.
• Cray T3D used 3D Torus.
• Mesh and Torus networks are natural fits for algorithms that work with 2D

and/or 3D arrays.

Two dimensional torus
• Diameter = sqrt(N)
• Bisection bandwidth = 2* sqrt(N)

N = the number of nodes in the network

Trees
• Diameter = log n.
• Bisection bandwidth = 1.
• Easy layout as planar graph.
• Many tree algorithms (e.g., summation).
• Fat trees avoid bisection bandwidth problem:
– More (or wider) links near top.
– Example: Thinking Machines CM-5. IBM SP.

Back-up

• Memory Hierarchy
• Vector instructions
• Computer networks
• Design Patterns

61

Alexander’s Pattern Language

• Christopher Alexander’s approach to (civil)
architecture:
– "Each pattern describes a problem which

occurs over and over again in our
environment, and then describes the core
of the solution to that problem, in such a
way that you can use this solution a
million times over, without ever doing it
the same way twice.“ Page x, A Pattern
Language, Christopher Alexander

• Alexander’s 253 (civil) architectural patterns
range from the creation of cities (2.
distribution of towns) to particular building
problems (232. roof cap)

• A pattern language is an organized way of
tackling an architectural problem using
patterns

• Main limitation:
– It’s about civil not software architecture!!!

Computational Patterns

The Dwarfs from “The Berkeley View” (Asanovic et al.)
Dwarfs form our key computational patterns

Patterns for Parallel Programming (PLPP)

• PLPP is the first attempt to develop a
complete pattern language for parallel
software development.

• PLPP is a great model for a pattern
language for parallel software

• PLPP mined scientific applications
that utilize a
monolithic application style

•PLPP doesn’t help us much with
horizontal composition

•Much more useful to us than: Design
Patterns: Elements of Reusable
Object-Oriented Software, Gamma,
Helm, Johnson & Vlissides, Addison-
Wesley, 1995.

Structural programming patterns

nIn order to create more
complex software it is
necessary to compose
programming patterns

nFor this purpose, it has been
useful to induct a set of
patterns known as
“architectural styles”

nExamples:
– pipe and filter
– event based/event driven
– layered
– Agent and

repository/blackboard
– process control
– Model-view-controller

66 13 dwarves

To get frameworks
right … start with an
understanding of
software
architecture

PLPP: Pattern
language of

Parallel
Programming

67

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Model-View-Controller

Iterative-Refinement

Map-Reduce

Layered-Systems

Puppeteer

Pipe-and-Filter

Agent-and-Repository

Process-Control

Event-Based/Implicit-Invocation

Arbitrary-Static-Task-Graph

Unstructured-Grids

Structured-Grids
Graphical-Models
Finite-State-Machines
Backtrack-Branch-and-Bound
N-Body-Methods
Circuits
Spectral-Methods
Monte-Carlo

Applications

Structural Patterns Computational Patterns

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

SPMD
Kernel-Par.

Fork/Join
Actors
Vector-Par

Distributed-Array
Shared-Data

Shared-Queue
Shared-Map
Parallel Graph Traversal

Coordinating Processes
Stream processing

Parallel Execution Patterns

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns

Communication

Shared Address Space Threads

Task Driven Execution

Algorithms and Data structureProgram structure

Synchronization

Loop-Par.
Task-queue

Thread/proc management

Concurrency Foundation constructs (not expressed as patterns)

Task Decomposition
Data Decomposition

Ordered task groups
Data sharing

Design Evaluation

Finding Concurrency Patterns

OPL/PLPP 2012

68

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Model-View-Controller

Iterative-Refinement

Map-Reduce

Layered-Systems

Puppeteer

Pipe-and-Filter

Agent-and-Repository

Process-Control

Event-Based/Implicit-Invocation

Arbitrary-Static-Task-Graph

Unstructured-Grids

Structured-Grids
Graphical-Models
Finite-State-Machines
Backtrack-Branch-and-Bound
N-Body-Methods
Circuits
Spectral-Methods
Monte-Carlo

Applications

Structural Patterns Computational Patterns

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

SPMD
Kernel-Par.

Fork/Join
Actors
Vector-Par

Distributed-Array
Shared-Data

Shared-Queue
Shared-Map
Parallel Graph Traversal

Coordinating Processes
Stream processing

Parallel Execution Patterns

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns

Communication

Shared Address Space Threads

Task Driven Execution

Algorithms and Data structureProgram structure

Synchronization

Loop-Par.
Task-queue

Thread/proc management

Concurrency Foundation constructs (not expressed as patterns)

Task Decomposition
Data Decomposition

Ordered task groups
Data sharing

Design Evaluation

Finding Concurrency Patterns

OPL/PLPP 2012

Garlan and Shaw
Architectural Styles

Berkeley View
13 dwarfs

Divide and Conquer

• Split the problem into smaller sub-problems; continue until
the sub-problems can be solve directly

n 3 Options:
¨ Do work as you split

into sub-problems
¨ Do work only at the

leaves
¨ Do work as you

recombine

69

subproblem

subsolution

subproblem subproblem

problem

solution

subsolution subsolution

subproblem

subsolution

subproblem subproblem

subsolution subsolution

merge

merge merge

split

splitsplit

solve solvesolvesolve

