
An Introduction to Parallel
Programming with OpenMP

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Tim Mattson
Intel Corp.

All materials are on github. To download them:
git clone https://github.com/tgmattso/ParProgCourse.git

I’m just a simple kayak instructor

Photo © by Greg Clopton, 2014

Introduction

2

To support my kayaking habit, I
work as a parallel programmer

Which means I know how to turn
math into lines on a speedup plot

P

S

Disclaimer & Optimization Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.
Performance tests and ratings are measured using specific computer systems and/or components and
reflect the approximate performance of Intel products as measured by those tests. Any difference in
system hardware or software design or configuration may affect actual performance. Buyers should
consult other sources of information to evaluate the performance of systems or components they are
considering purchasing. For more information on performance tests and on the performance of Intel
products, reference www.intel.com/software/products.
All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, VTune, and Cilk are trademarks of Intel
Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations
that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction
sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this
product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and
Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

4

Preliminaries: Part 1

• Disclosures
–The views expressed in this tutorial are those of the people delivering the

tutorial.
– We are not speaking for our employers.
– We are not speaking for the OpenMP ARB

• We take these tutorials VERY seriously:
–Help us improve … tell us how you would make this tutorial better.

5

Preliminaries: Part 2
• Our plan for the day .. Active learning!
–We will mix short lectures with short exercises.
–You will use your laptop to connect to a multiprocessor server.

• Please follow these simple rules
–Do the exercises that we assign and then change things around and

experiment.
– Embrace active learning!

–Don’t cheat: Do Not look at the solutions before you complete an exercise …
even if you get really frustrated.

Grab content from github
• Clone the parallel programming course git hub repository
– git clone https://github.com/tgmattso/ParProgCourse.git

• We will use the exercises in the directory: Exercises/OpenMP

• These lectures assume familiarity with C. A simple C program the text of which explains all the C you
need to know for this tutorial is included with the exercises
– Exercises/learningC.c

• The slides for this lecture are in the file: Openmp_Intro_hands_on.pdf

• There are also three other lectures we won’t be covering … for you to study on your own:
– Par_Comp_Intro_short.pdf,
– MPI_intro_hands_on.pdf,
– Other_par_prog_envs.pdf

• If we need to use slurm to submit jobs, this repository has information on how to use slurm on Adroit
– https://github.com/PrincetonUniversity/hpc_beginning_workshop/tree/2021fall/RC_example_jobs/cxx/multithreaded

6

https://github.com/PrincetonUniversity/hpc_beginning_workshop/tree/2021fall/RC_example_jobs/cxx/multithreaded

7

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory Models and Point-to-Point Synchronization
– Programming your GPU with OpenMP

C$OMP TASKGROUP

8

OpenMP* Overview

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP TASKWAIT

C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

#pragma omp target teams distribute parallel for simd

#pragma omp atomic capture

#pragma omp single

OpenMP: An API for Writing Parallel Applications

§A set of compiler directives and library routines for parallel application programmers

§Greatly simplifies writing multi-threaded (MT) programs in Fortran, C and C++

§Also supports non-uniform memories, vectorization and GPU programming

#pragma omp atomic seq_cst

The Growth of Complexity in OpenMP

9

The full spec is overwhelming. We focus on the Common Core: the 21 items most people restrict themselves to

0

100

200

300

400

500

600

1995 2000 2005 2010 2015 2020 2025

Chart Title

1.0

1.0 1.1 2.0

2.5
3.0 3.1

4.0

4.5

5.0*

5.1*

5.2*
tr10

2.0

Fortran spec
C/C++ spec
Merged C/C++ and Fortran spec

1995 2000 2005 2010 2015 2020 2025
0

500

600

400

300

200

100

Page Counts (not including front matter, indices or appendices) for OpenMP Specs

Page C
ounts

Our goal in 1997 … A simple interface for application programmers

OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved execution across threads.

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.
SPMD pattern: Create threads with a parallel region and split up the work using the number of
threads and the thread ID.

double omp_get_wtime() Speedup and Amdahl's law. False sharing and other performance issues.

setenv OMP_NUM_THREADS N Setting the internal control variable for the default number of threads with an environment
variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.
Revisit interleaved execution.

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

default(none) Force explicit definition of each variable’s storage attribute

nowait Disabling implied barriers on workshare constructs, the high cost of barriers, and the flush
concept (but not the flush directive).

#pragma omp single Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 21 items

10

OpenMP Basic Definitions: Basic Solution Stack

11

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er

CPU cores SIMD units GPU cores

Shared address space (NUMA)

H
W

11

OpenMP Basic Definitions: Basic Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er
H

W

Shared address space (SMP)

. . .

For the OpenMP Common Core, we focus on Symmetric Multiprocessor Case ….
i.e., lots of threads with “equal cost access” to memory 12

13

OpenMP Basic Syntax
• Most of the constructs in OpenMP are compiler directives.

C and C++ Fortran
Compiler directives

#pragma omp construct [clause [clause]…] !$OMP construct [clause [clause] …]

Example
#pragma omp parallel private(x)
{

}

!$OMP PARALLEL PRIVATE(X)

!$OMP END PARALLEL

Function prototypes and types:
#include <omp.h> use OMP_LIB

• Most OpenMP constructs apply to a “structured block”.
– Structured block: a block of one or more statements with one point of entry at the top and one point of exit at the bottom.
– It’s OK to have an exit() within the structured block.

14

Exercise, Part A: Hello World
Verify that your environment works

• Write a program that prints “hello world”.

#include<stdio.h>
int main()
{

printf(“ hello ”);
printf(“ world \n”);

}

https://github.com/tgmattso/OmpCommonCore.git
• To download the slides:

git clone https://github.com/tgmattso/OpenMPCommonCore.git

https://github.com/tgmattso/OmpCommonCore.git

15

Exercise, Part B: Hello World
Verify that your OpenMP environment works

• Write a multithreaded program that prints “hello world”.

#include <stdio.h>
int main()
{

printf(“ hello ”);
printf(“ world \n”);

}

Switches for compiling and linking

gcc -fopenmp Gnu (Linux, OSX)

cc -qopenmp Intel (Linux@NERSC)

icl /Qopenmp Intel (windows)

icc -fopenmp Intel (Linux, OSX)

#pragma omp parallel

{

#include <omp.h>

}

git clone https://github.com/tgmattso/OpenMP_Common_Core.git

16

Solution
A Multi-Threaded “Hello World” Program

• Write a multithreaded program where each thread prints “hello world”.

#include <omp.h>
#include <stdio.h>
int main()
{

#pragma omp parallel
{

printf(“ hello ”);
printf(“ world \n”);

}
}

Sample Output:
hello hello world

world

hello hello world

world

!"#$%&'($)*+,#'-(*#

!"#"$$%$&#%'()*&+(,-&
.%/"0$,&*012%#&)/&,-#%".3

4*.&)/&,-%&!"#"$$%$&#%'()*

The statements are interleaved based on how the operating schedules the threads

17

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory Models and Point-to-Point Synchronization
– Programming your GPU with OpenMP

18

OpenMP Execution model:

Fork-Join Parallelism:
u Initial thread spawns a team of threads as needed.

uParallelism added incrementally until performance goals are met, i.e., the sequential
program evolves into a parallel program.

Parallel Regions

Initial
Thread

A Nested
Parallel
Region

!"#$"%&'()*+(,&-

19

Thread Creation: Parallel Regions
• You create threads in OpenMP* with the parallel construct.
• For example, to create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID,A);

}

• Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread
executes a
copy of the
code within

the
structured

block

Runtime function to
request a certain
number of threads

Runtime function
returning a thread ID

Thread Creation: Parallel Regions Example

• Each thread executes the
same code redundantly.

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID, A);

}
printf(“all done\n”);

omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single copy of A is
shared between all

threads.

Threads wait here for all threads to finish before
proceeding (i.e., a barrier)

20

21

Thread creation: How many threads did you actually get?

• Request a number of threads with omp_set_num_threads()
• The number requested may not be the number you actually get.

– An implementation may silently give you fewer threads than you requested.
– Once a team of threads has launched, it will not be reduced.

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();

int nthrds = omp_get_num_threads();
pooh(ID,A);

}

• Each thread calls pooh(ID,A) for ID = 0 to nthrds-1

Each thread
executes a
copy of the
code within

the
structured

block

Runtime function to
request a certain

number of threads

Runtime function to
return actual

number of threads
in the team

22

An Interesting Problem to Play With
Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx = Dx å F(xi) » p
i = 0

N

Mathematically, we know that:

We can approximate the integral as a sum of
rectangles:

Where each rectangle has width Dx and height F(xi) at
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X0.0

i = 0

N

23

Serial PI Program

static long num_steps = 100000;
double step;
int main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

See ParProgCourse/Exercises/OpenMP/pi.c

24

Serial PI Program

#include <omp.h>
static long num_steps = 100000;
double step;
int main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
double tdata = omp_get_wtime();
for (i=0;i< num_steps; i++){

x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;
tdata = omp_get_wtime() - tdata;
printf(“ pi = %f in %f secs\n”,pi, tdata);

}

See ParProgCourse/Exercises/OpenMP/pi.c

The library routine
get_omp_wtime()
is used to find the

elapsed “wall
time” for blocks of

code

25

Exercise: the Parallel Pi Program
• Create a parallel version of the pi program using a parallel construct:

#pragma omp parallel
• Pay close attention to shared versus private variables.
• In addition to a parallel construct, you will need the runtime library routines
– int omp_get_num_threads();
– int omp_get_thread_num();
–double omp_get_wtime();
–omp_set_num_threads();

.(/#'($'0#)1$,0'0($)#'2'-(3#,'"1($4'($'45#'"204

.56#2,'78'16'62$9

:+/;#6'1-'456#2,0'($'45#'4#2/

<#=+#04'2'$+/;#6'1-'456#2,0'($'45#'4#2/

26

Hints: the Parallel Pi Program
• Use a parallel construct:

#pragma omp parallel

• The challenge is to:
– divide loop iterations between threads (use the thread ID and the number of threads).
– Create an accumulator for each thread to hold partial sums that you can later combine to

generate the global sum.

• In addition to a parallel construct, you will need the runtime library routines
– int omp_set_num_threads();
– int omp_get_num_threads();
– int omp_get_thread_num();
– double omp_get_wtime();

27

>($)*+,#'?1/"@5A
0424()'*1B'+/C04#"0 D'EFFFFFG''''''''',1+;*#'04#"G
>,#-($#':H%C.I<JK8L'M
N1(,'/2($'OP
Q''''($4'(R'$456#2,0G'',1+;*#'"(R'0+/S:H%C.I<JK8LTG
04#"'D'E@FUO,1+;*#P'$+/C04#"0G
1/"C0#4C$+/C456#2,0O:H%C.I<JK8LPG
>"62B/2'1/" "262**#*
Q

($4'(R'(,R$456,0G
,1+;*#'3G
(,'D'1/"CB#4C456#2,C$+/OPG
$456,0 D'1/"CB#4C$+/C456#2,0OPG
(-'O(,'DD'FP'''$456#2,0 D'$456,0G
-16'O(D(,R'0+/S(,TDF@FG(?'$+/C04#"0G'(D(V$456,0P'Q

3'D'O(VF@WPX04#"G
0+/S(,T'VD'Y@FUOE@FV3X3PG

Z
Z
-16O(DFR'"(DF@FG(?$456#2,0G(VVP"('VD'0+/S(T'X'04#"G

Z

Example: A simple SPMD pi program

!"#$#%&'()*+*"'%#'*,'*""*-'./$&,(/#,&.'0-'
,1$0&"'#2'%3"&*.('%#'*4#/.'"*)&')#,./%/#,5

63/('/('*')#$$#,'%"/)7'/,'8!9:';"#<"*$('%#'
)"&*%&'*')-)+/)'./(%"/01%/#,'#2'+##;'/%&"*%/#,(

=,+-'#,&'%3"&*.'(3#1+.')#;-'%3&',1$0&"'#2'
%3"&*.('%#'%3&'<+#0*+'4*+1&'%#'$*7&'(1"&'
$1+%/;+&'%3"&*.('>"/%/,<'%#'%3&'(*$&'*.."&(('
.#,’%')#,2+/)%5''

28

SPMD: Single Program Mulitple Data
• Run the same program on P processing elements where P can be arbitrarily large.

MPI programs almost always use this pattern … it is probably the
most commonly used pattern in the history of parallel programming.

• Use the rank … an ID ranging from 0 to (P-1) … to select between a set of tasks and to manage any shared
data structures.

Replicate the program.

Add glue code

Break up the data

A brief digression to talk about
performance issues in parallel computing

29

30

Consider performance of parallel programs

Load Data Compute T1 Consume Results Compute TN
…

Timeseq(1) = Tload + N*Ttask + Tconsume

Compute N independent tasks on one processor

Ideally Cut
runtime by ~1/P
(Note: Parallelism
only speeds-up the
concurrent part)

…

Timepar(P) = Tload + (N/P)*Ttask + Tconsume

Compute N independent tasks with P processors

Load Data

Compute T1

Compute TN

Consume Results

Talking about performance

§Speedup: the increased
performance from running on P
processors.)(

)1(
)(

PTime
Time

PS
par

seq=

PPS =)(

PPS >)(

n Perfect Linear Speedup:
happens when no parallel
overhead and algorithm is
100% parallel.

n Super-linear Speedup: typically
due to cache effects … i.e. as P
grows, aggregate cache size
grows so more of the problem
fits in cache

31

Amdahl’s Law
• What is the maximum speedup you can expect from a parallel program?
• Approximate the runtime as a part that can be sped up with additional processors and a part that

is fundamentally serial.

seqpar Time
P
fractionparallelfractionserialPTime *)__()(+=

• If you had an unlimited number of processors:

• If serial_fraction is a and parallel_fraction is (1- a) then the speedup is:

S(P) =
Timeseq

Timepar (P)
=

Timeseq
(α +1−α

P
)*Timeseq

=
1

α +
1−α
P

¥®P

• The maximum possible speedup is:
a
1

=S Amdahl’s
Law

32

Amdahl’s Law

1

2

4

8

16

32

64

1 2 4 8 16 32 64

Sp
ee

du
p

Number of Processors

Parallelizable fraction of the program

0.999 0.99 0.95 0.9

33

So now you should understand my silly introduction slide.

34

We measure our
success as parallel
programmers by how
close we come to ideal
linear speedup.

A good parallel
programmer always
figures out when you
fall off the linear
speedup curve and
why that has
occurred.

Now that you understand how to
think about parallel performance,

lets get back to OpenMP

35

Internal control variables and how to control the
number of threads in a team
• We’ve used the following construct to control the number of threads. (e.g. to request 12 threads):
– omp_set_num_threads(12)

• What does omp_set_num_threads() actually do?
– It resets an “internal control variable” the system queries to define the default number of threads to

request on subsequent parallel constructs.

• Is there an easier way to change this internal control variable … perhaps one that doesn’t require
re-compilation? Yes.
– When an OpenMP program starts up, it queries an environment variable OMP_NUM_THREADS and sets

the appropriate internal control variable to the value of OMP_NUM_THREADS
– For example, to set the initial, default number of threads to request in OpenMP from my apple laptop

> export OMP_NUM_THREADS=12

36

37

Exercise

• Go back to your parallel pi program and explore how well it scales with the number
of threads.

• Can you explain your performance with Amdahl’s law? If not what else might be
going on?

– int omp_get_num_threads();
– int omp_get_thread_num();
–double omp_get_wtime();
–omp_set_num_threads();
–export OMP_NUM_THREADS = N

K$'#$N(61$/#$4'N26(2;*#'
41'0#4'45#',#-2+*4'$+/;#6'
1-'456#2,0'41'6#=+#04'41':

Results*

threads 1st

SPMD*
1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

*SPMD: Single Program Multiple Data

Intel compiler (icpc) with default
optimization level (O2) on Apple OS X
10.7.3 with a dual core (four HW thread)
Intel® CoreTM i5 processor at 1.7 Ghz and
4 Gbyte DDR3 memory at 1.333 Ghz.

!"#$%&'()*+,-./0
1232"$)%+#4)#&,512(-1 6)7888889)))))))))'+&:%()12(-9
!'(;"#()<=>5?@ABCDE)F
G+"'),3"#)HI
J))))"#2)"K)#2/L(3'19))'+&:%()-"K)1&,M<=>5?@ABCDEN9
12(-)6)7.8OH'+&:%(I)#&,512(-19
+,-51(25#&,52/L(3'1H<=>5?@ABCDEI9
!-L34,3)+,- -3L3%%(%
J

"#2)"K)"'K#2/L'19
'+&:%()P9
"')6)+,-54(252/L(3'5#&,HI9
#2/L'1 6)+,-54(25#&,52/L(3'1HI9
";)H"')66)8I)))#2/L(3'1 6)#2/L'19
;+L)H"6"'K)1&,M"'N68.89"*)#&,512(-19)"6"Q#2/L'1I)J

P)6)H"Q8.RIS12(-9
1&,M"'N)Q6)T.8OH7.8QPSPI9

U
U
;+LH"68K)-"68.89"*#2/L(3'19"QQI-")Q6)1&,M"N)S)12(-9

U

38

39

Why Such Poor Scaling? False Sharing
• If independent data elements happen to sit on the same cache line, each update will cause the

cache lines to “slosh back and forth” between threads … This is called “false sharing”.

• If you promote scalars to an array to support creation of an SPMD program, the array elements are
contiguous in memory and hence share cache lines … Results in poor scalability.

• Solution: Pad arrays so elements you use are on distinct cache lines.

Sum[0] Sum[1] Sum[2] Sum[3] Sum[0] Sum[1] Sum[2] Sum[3]
Core 0 Core 1

L1 $ lines L1 $ lines

HW thrd. 0 HW thrd. 1 HW thrd. 2 HW thrd. 3

Shared last level cache and connection to I/O and DRAM

40

>($)*+,#'?1/"@5A
0424()'*1B'+/C04#"0 D'EFFFFFG''''''''',1+;*#'04#"G
>,#-($#':H%C.I<JK8L'M
>,#-($#'&K8'[UU'200+/#'\Y';]4#'^E')2)5#'*($#'0(_#
N1(,'/2($'OP
Q''''($4'(R'$456#2,0G'',1+;*#'"(R'0+/S:H%C.I<JK8LTS&K8T G
04#"'D'E@FUO,1+;*#P'$+/C04#"0G
1/"C0#4C$+/C456#2,0O:H%C.I<JK8LPG
>"62B/2'1/" "262**#*
Q
($4'(R'(,R$456,0G
,1+;*#'3G
(,'D'1/"CB#4C456#2,C$+/OPG
$456,0 D'1/"CB#4C$+/C456#2,0OPG
(-'O(,'DD'FP'''$456#2,0 D'$456,0G
-16'O(D(,R'0+/S(,TDF@FG(?'$+/C04#"0G'(D(V$456,0P'Q
3'D'O(VF@WPX04#"G
0+/S(,TSFT'VD'Y@FUOE@FV3X3PG

Z
Z
-16O(DFR'"(DF@FG(?$456#2,0G(VVP"('VD'0+/S(TSFT'X'04#"G

Z

!"#$%&'$"((")$*+$'",&$
*-.$/"0-'$1*12"$
#133'('2%$,",&'$012'

Example: Eliminate false sharing by padding the sum array

Results*: PI Program, Padded Accumulator
• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD
1st

SPMD
padded

1 1.86 1.86
2 1.03 1.01
3 1.08 0.69
4 0.97 0.53

*Intel compiler (icpc) with default
optimization level (O2) on Apple OS
X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor
at 1.7 Ghz and 4 Gbyte DDR3
memory at 1.333 Ghz.

41

!"#$%&'()*+,-./0
1232"$)%+#4)#&,512(-1 6)7888889)))))))))'+&:%()12(-9
!'(;"#()<=>5?@ABCDE)F
!'(;"#()GCD)H II)311&,()JK):L2(M7)3/()%"#()1"N(
O+"'),3"#)PQ
R))))"#2)"S)#2/T(3'19))'+&:%()-"S)1&,U<=>5?@ABCDEVUGCDV 9
12(-)6)7.8IP'+&:%(Q)#&,512(-19
+,-51(25#&,52/T(3'1P<=>5?@ABCDEQ9
!-T34,3)+,- -3T3%%(%
R
"#2)"S)"'S#2/T'19
'+&:%()W9
"')6)+,-54(252/T(3'5#&,PQ9
#2/T'1 6)+,-54(25#&,52/T(3'1PQ9
";)P"')66)8Q)))#2/T(3'1 6)#2/T'19
;+T)P"6"'S)1&,U"'V68.89"*)#&,512(-19)"6"X#2/T'1Q)R
W)6)P"X8.YQZ12(-9
1&,U"'VU8V)X6)K.8IP7.8XWZWQ9

[
[
;+TP"68S)-"68.89"*#2/T(3'19"XXQ-")X6)1&,U"VU8V)Z)12(-9

[

42

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory Models and Point-to-Point Synchronization
– Programming your GPU with OpenMP

43

Synchronization

• High level synchronization included in the common core:
–critical
–barrier

• Other, more advanced, synchronization operations:
–atomic
–ordered
– flush
– locks (both simple and nested)

4)2,&(+215"%1+2$1*$-*'#$%+$1.6+*'$+(#'($
,+2*%("12%*$"2#$%+$6(+%',%$",,'**$%+$*&"('#$#"%"

44

Synchronization: critical

• Mutual exclusion: Only one thread at a time can enter a critical region.

float res;

#pragma omp parallel

{ float B; int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

B = big_SPMD_job(id, nthrds);

#pragma omp critical
res += consume (B);

}

Threads wait their turn
– only one thread at a
time calls consume()

45

Synchronization: barrier
• Barrier: a point in a program all threads much reach before any threads are allowed to proceed.
• It is a “stand alone” pragma meaning it is not associated with user code … it is an executable

statement.

double Arr[8], Brr[8]; int numthrds;

omp_set_num_threads(8)

#pragma omp parallel

{ int id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id==0) numthrds = nthrds;

Arr[id] = big_ugly_calc(id, nthrds);

#pragma omp barrier
Brr[id] = really_big_and_ugly(id, nthrds, Arr);

}

Threads wait until all
threads hit the barrier.
Then they can go on.

46

Exercise
• In your first Pi program, you probably used an array to create space for each thread to store its partial

sum.
• If array elements happen to share a cache line, this leads to false sharing.

– Non-shared data in the same cache line so each update invalidates the cache line … in essence
“sloshing independent data” back and forth between threads.

• Modify your “pi program” to avoid false sharing due to the partial sum array.
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
omp_set_num_threads();
#pragma parallel
#pragma critical

PI Program with False Sharing

*Intel compiler (icpc) with no
optimization on Apple OS X 10.7.3
with a dual core (four HW thread)
Intel® CoreTM i5 processor at 1.7 Ghz
and 4 Gbyte DDR3 memory at 1.333
Ghz.

threads 1st

SPMD
1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

Recall that promoting sum to an array made
the coding easy, but led to false sharing and
poor performance.

!"#$%&'()*+,-./0
1232"$)%+#4)#&,512(-1 6)7888889)))))))))'+&:%()12(-9
!'(;"#()<=>5?@ABCDE)F
G+"'),3"#)HI
J))))"#2)"K)#2/L(3'19))'+&:%()-"K)1&,M<=>5?@ABCDEN9
12(-)6)7.8OH'+&:%(I)#&,512(-19
+,-51(25#&,52/L(3'1H<=>5?@ABCDEI9
!-L34,3)+,- -3L3%%(%
J

"#2)"K)"'K#2/L'19
'+&:%()P9
"')6)+,-54(252/L(3'5#&,HI9
#2/L'1 6)+,-54(25#&,52/L(3'1HI9
";)H"')66)8I)))#2/L(3'1 6)#2/L'19
;+L)H"6"'K)1&,M"'N68.89"*)#&,512(-19)"6"Q#2/L'1I)J

P)6)H"Q8.RIS12(-9
1&,M"'N)Q6)T.8OH7.8QPSPI9

U
U
;+LH"68K)-"68.89"*#2/L(3'19"QQI-")Q6)1&,M"N)S)12(-9

U

48

>($)*+,#'?1/"@5A
0424()'*1B'+/C04#"0 D'EFFFFFG''''''''',1+;*#'04#"G
>,#-($#':H%C.I<JK8L'M
N1(,'/2($'OP
Q''($4'$456#2,0G',1+;*#''"(DF@FG 04#"'D'E@FUO,1+;*#P'$+/C04#"0G
1/"C0#4C$+/C456#2,0O:H%C.I<JK8LPG
>"62B/2'1/" "262**#*
Q
($4'(R'(,R'$456,0G'''',1+;*#'3R'0+/G
(,'D'1/"CB#4C456#2,C$+/OPG
$456,0 D'1/"CB#4C$+/C456#2,0OPG
(-'O(,'DD'FP'''$456#2,0 D'$456,0G'''
-16'O(D(,R'0+/DF@FG(?'$+/C04#"0G'(D(V$456,0P'Q
3'D'O(VF@WPX04#"G
0+/'VD'Y@FUOE@FV3X3PG

Z
>"62B/2'1/")6(4()2*

"('VD'0+/'X'04#"G
Z
Z

Example: Using a critical section to remove impact of false sharing

L+/'B1#0'“1+4'1-'0)1"#” ;#]1$,'45#'"262**#*'6#B(1$'…
01']1+'/+04'0+/'(4'($'5#6#@'''%+04'"614#)4'0+//24(1$'
($41'"('($'2')6(4()2*'6#B(1$'01'+",24#0',1$’4')1$-*()4

:1'2662]R'01'$1'-2*0#'0526($B@'

`6#24#'2'0)2*26'*1)2*'41'#2)5'
456#2,'41'2))+/+*24#'"264(2*'0+/0@

!"#$%&'()*+,-./0
1232"$)%+#4)#&,512(-1 6)7888889)))))))))'+&:%()12(-9
!'(;"#()<=>5?@ABCDE)F
G+"'),3"#)HI
J))"#2)#2/K(3'19)'+&:%())-"68.89 12(-)6)7.8LH'+&:%(I)#&,512(-19
+,-51(25#&,52/K(3'1H<=>5?@ABCDEI9
!-K34,3)+,- -3K3%%(%
J
"#2)"M)"'M)#2/K'19))))'+&:%()NM)1&,9
"')6)+,-54(252/K(3'5#&,HI9
#2/K'1 6)+,-54(25#&,52/K(3'1HI9
";)H"')66)8I)))#2/K(3'1 6)#2/K'19)))
;+K)H"6"'M)1&,68.89"*)#&,512(-19)"6"O#2/K'1I)J
N)6)H"O8.PIQ12(-9
1&,)O6)R.8LH7.8ONQNI9

S
!-K34,3)+,- $K"2"$3%

-")O6)1&,)Q)12(-9
S
S

Results*: pi program critical section

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3
with a dual core (four HW thread) Intel® CoreTM i5 processor at
1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD
1st

SPMD
padded

SPMD
critical

1 1.86 1.86 1.87
2 1.03 1.01 1.00
3 1.08 0.69 0.68
4 0.97 0.53 0.53

49

50

>($)*+,#'?1/"@5A
0424()'*1B'+/C04#"0 D'EFFFFFG''''''''',1+;*#'04#"G
>,#-($#':H%C.I<JK8L'M
N1(,'/2($'OP
Q''($4'$456#2,0G',1+;*#''"(DF@FG 04#"'D'E@FUO,1+;*#P'$+/C04#"0G
1/"C0#4C$+/C456#2,0O:H%C.I<JK8LPG
>"62B/2'1/" "262**#*
Q
($4'(R'(,R'$456,0G'''',1+;*#'3R'0+/G
(,'D'1/"CB#4C456#2,C$+/OPG
$456,0 D'1/"CB#4C$+/C456#2,0OPG
(-'O(,'DD'FP'''$456#2,0 D'$456,0G'''
-16'O(D(,R'0+/DF@FG(?'$+/C04#"0G'(D(V$456,0P'Q
3'D'O(VF@WPX04#"G
>"62B/2'1/")6(4()2*
0+/'VD'Y@FUOE@FV3X3PG

Z
Z

Z

Example: Using a critical section to remove impact of false sharing

a524'b1+*,'52""#$'(-']1+'"+4'45#'
)6(4()2*'0#)4(1$'($0(,#'45#'*11"c

51

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory Models and Point-to-Point Synchronization
– Programming your GPU with OpenMP

52

The Loop Worksharing Construct

• The loop worksharing construct splits up loop iterations among the threads in a team

76("8."$+.6 6"("00'0

9
76("8."$+.6 3+($

3+($:;<=>;?@>;AAB9
@CDEF4EGHH:;B>

I
I

!""#$%"&'()*%($&+,-.

/01022.$3")

/4")()+&.$5"

The loop control index I is made
“private” to each thread by default.

Threads wait here until all
threads are finished with the

parallel loop before any proceed
past the end of the loop

53

Loop Worksharing Construct
A motivating example

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel
{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * (N / Nthrds)-1;
if (id == Nthrds-1)iend = N;
for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel
#pragma omp for

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel region

(SPMD Pattern)

OpenMP parallel region and
a worksharing for construct

54

Loop Worksharing Constructs: The schedule clause
• The schedule clause affects how loop iterations are mapped onto threads

– schedule(static [,chunk])
– Deal-out blocks of iterations of size “chunk” to each thread.

– schedule(dynamic[,chunk])
– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.

• Example:
– #pragma omp for schedule(dynamic, 10)

Schedule Clause When To Use
STATIC Pre-determined and predictable

by the programmer

DYNAMIC Unpredictable, highly variable
work per iteration

Least work at runtime :
scheduling done at
compile-time

Most work at runtime :
complex scheduling
logic used at run-time

55

Combined Parallel/Worksharing Construct

• OpenMP shortcut: Put the “parallel” and the worksharing directive on the same line

double res[MAX]; int i;
#pragma omp parallel
{

#pragma omp for
for (i=0;i< MAX; i++) {

res[i] = huge();
}

}

These are equivalent

double res[MAX]; int i;
#pragma omp parallel for

for (i=0;i< MAX; i++) {
res[i] = huge();

}

56

Working with loops

• Basic approach
– Find compute intensive loops
– Make the loop iterations independent ... So they can safely execute in any order without

loop-carried dependencies
– Place the appropriate OpenMP directive and test

int i, j, A[MAX];
j = 5;
for (i=0;i< MAX; i++) {

j +=2;
A[i] = big(j);

}

int i, A[MAX];
#pragma omp parallel for
for (i=0;i< MAX; i++) {

int j = 5 + 2*(i+1);
A[i] = big(j);

} Remove loop
carried
dependence

Note: loop index
“i” is private by
default

57

Reduction

• We are combining values into a single accumulation variable (ave) … there is a true dependence
between loop iterations that can’t be trivially removed.

• This is a very common situation … it is called a “reduction”.

• Support for reduction operations is included in most parallel programming environments.

double ave=0.0, A[MAX];
int i;
for (i=0;i< MAX; i++) {

ave + = A[i];
}
ave = ave/MAX;

• How do we handle this case?

58

Reduction
• OpenMP reduction clause:

reduction (op : list)

• Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and initialized depending on the “op” (e.g. 0 for “+”).
– Updates occur on the local copy.
– Local copies are reduced into a single value and combined with the original global value.

• The variables in “list” must be shared in the enclosing parallel region.

double ave=0.0, A[MAX]; int i;
#pragma omp parallel for reduction (+:ave)
for (i=0;i< MAX; i++) {

ave + = A[i];
}
ave = ave/MAX;

59

OpenMP: Reduction operands/initial-values
• Many different associative operands can be used with reduction:
• Initial values are the ones that make sense mathematically.

Operator Initial value
+ 0
* 1
- 0

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value
& ~0
| 0

^ 0
&& 1
|| 0

Fortran Only

Operator Initial value
.AND. .true.
.OR. .false.

.NEQV. .false.
.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.

OpenMP includes user defined reductions
and array-sections as reduction variables

(we just don’t cover those topics here)

60

Exercise: PI with loops

• Go back to the serial pi program and parallelize it with a loop construct
• Your goal is to minimize the number of changes made to the serial program.

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();

61

Example: PI with a loop and a reduction
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
#pragma omp parallel
{

double x;
#pragma omp for reduction(+:sum)

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
}

pi = step * sum;
}

5#%",%&"&36"$"#&$)6"$&,)&%"6-&,-#%".&,)&-)$.&
7"$0%&)/&8&",&,-%&6%*,%#&)/&%"6-&(*,%#7"$

5#%",%&"&,%"1&)/&,-#%".3&9&
+(,-)0,&"&:"#"$$%$&6)*3,#06,;&<)0=$$&
%7%#&-"7%&1)#%&,-"&)*%&,-#%".

>#%"?&0:&$)):&(,%#",()*3&
"*.&"33('*&,-%1&,)&
,-#%".3&9&3%,,(*'&0:&"&
#%.06,()*&(*,)&301@&&
A),%&9&,-%&$)):&(*.%8&(3&
$)6"$&,)&"&,-#%".&2<&.%/"0$,@

62

Example: PI with a loop and a reduction
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{

double pi, sum = 0.0;
step = 1.0/(double) num_steps;

#pragma omp parallel for reduction(+:sum)
for (int i=0;i< num_steps; i++){

double x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

B3(*'&1).%#*&5&3,<$%;&+%&
:0,&.%6$"#",()*3&6$)3%&,)&
+-%#%&,-%<&"#%&03%.&9&
+-(6-&$%,3&1%&03%&,-%&
:"#"$$%$&/)#&6)*3,#06,@

Results*: PI with a loop and a reduction

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD
1st

SPMD
padded

SPMD
critical

PI Loop

1 1.86 1.86 1.87 1.91
2 1.03 1.01 1.00 1.02
3 1.08 0.69 0.68 0.80
4 0.97 0.53 0.53 0.68

63

64

The nowait clause
• Barriers are really expensive. You need to understand when they are implied

and how to skip them when it’s safe to do so.
double A[big], B[big], C[big];

#pragma omp parallel
{

int id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier
#pragma omp for

for(i=0;i<N;i++){C[i]=big_calc3(i,A);}
#pragma omp for nowait

for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }
A[id] = big_calc4(id);

}
implicit barrier at the end
of a parallel region

implicit barrier at the end of a for
worksharing construct

no implicit barrier
due to nowait

65

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory Models and Point-to-Point Synchronization
– Programming your GPU with OpenMP

66

Data Environment:
Default storage attributes

• Shared memory programming model:
– Most variables are shared by default

• Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE variables
– C: File scope variables, static
– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called from parallel

regions are PRIVATE
– Automatic variables within a statement block are PRIVATE.

67

double A[10];
int main() {
int index[10];
#pragma omp parallel

work(index);
printf(“%d\n”, index[0]);

}

extern double A[10];
void work(int *index) {
double temp[10];
static int count;
...

}

Data Sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are
shared by all threads.

temp is local to each
thread

68

Data Sharing: Changing storage attributes

• One can selectively change storage attributes for constructs using the
following clauses* (note: list is a comma-separated list of variables)

–shared(list)
–private(list)
– firstprivate(list)

• These can be used on parallel and for constructs … other than shared
which can only be used on a parallel construct

• Force the programmer to explicitly define storage attributes
–default (none) default() can only be used

on parallel constructs

69

Data Sharing: Private clause

int N = 1000;
extern void init_arrays(int N, double *A, double *B, double *C);

void example () {
int i, j;
double A[N][N], B[N][N], C[N][N];
init_arrays(N, *A, *B, *C);

#pragma omp parallel for private(j)
for (i = 0; i < 1000; i++)

for(j = 0; j<1000; j++)
C[i][j] = A[i][j] + B[i][j];

}

• private(var) creates a new local copy of var for each thread.

OpenMP makes the loop
control index on the
parallel loop (i) private by
default … but not for the
second loop (j)

70

Data Sharing: Private clause

void wrong() {
int tmp = 0;

#pragma omp parallel for private(tmp)
for (int j = 0; j < 1000; ++j)

tmp += j;
printf(“%d\n”, tmp);

}

• private(var) creates a new local copy of var for each thread.
– The value of the private copies is uninitialized
– The value of the original variable is unchanged after the region

tmp was not
initialized

tmp is 0 here

When you need
to refer to the

variable tmp that
exists prior to the
construct, we call

it the original
variable.

71

Data Sharing: Private and the original variable

int tmp;
void danger() {

tmp = 0;
#pragma omp parallel private(tmp)

work();
printf(“%d\n”, tmp);

}

• The original variable’s value is unspecified if it is referenced outside of the
construct

– Implementations may reference the original variable or a copy ….. a dangerous
programming practice!

– For example, consider what would happen if the compiler inlined work()?

extern int tmp;
void work() {

tmp = 5;
}

unspecified which
copy of tmptmp has unspecified value

Firstprivate clause

• Variables initialized from a shared variable
• C++ objects are copy-constructed

72

incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i = 0; i <= MAX; i++) {

if ((i%2)==0) incr++;
A[i] = incr;

}

Each thread gets its own copy of
incr with an initial value of 0

72

73

Data sharing:
A data environment test
• Consider this example of PRIVATE and FIRSTPRIVATE

• Are A,B,C private to each thread or shared inside the parallel region?
• What are their initial values inside and values after the parallel region?

variables: A = 1,B = 1, C = 1
#pragma omp parallel private(B) firstprivate(C)

Inside this parallel region ...
l “A” is shared by all threads; equals 1
l “B” and “C” are private to each thread.

– B’s initial value is undefined
– C’s initial value equals 1

Following the parallel region ...
l B and C revert to their original values of 1
l A is either 1 or the value it was set to inside the parallel region

74

Data Sharing: Default clause
• default(none): Forces you to define the storage attributes for variables that

appear inside the static extent of the construct … if you fail the compiler will complain.
Good programming practice!

• You can put the default clause on parallel and parallel + workshare constructs.

The full OpenMP specification has other versions of the default clause, but they
are not used very often so we skip them in the common core

#include <omp.h>
int main()
{

int i, j=5; double x=1.0, y=42.0;
#pragma omp parallel for default(none) reduction(*:x)
for (i=0;i<N;i++){

for(j=0; j<3; j++)
x+= foobar(i, j, y);

}
printf(“ x is %f\n”,(float)x);

}

The static
extent is the
code in the

compilation unit
that contains
the construct.

The compiler would
complain about j and y,
which is important since

you don’t want j to be
shared

75

Exercise: Mandelbrot set area

• The supplied program (mandel.c) computes the area of a Mandelbrot set.

• The program has been parallelized with OpenMP, but we were lazy and didn’t do
it right.

• Find and fix the errors (hint … the problem is with the data environment).

• Once you have a working version, try to optimize the program.
– Try different schedules on the parallel loop.
– Try different mechanisms to support mutual exclusion … do the efficiencies change?

This exercises come from Mark Bull of EPCC (at University of Edinburgh)

The Mandelbrot Set Area Program
#include <omp.h>
define NPOINTS 1000
define MXITR 1000
struct d_complex{

double r; double i;
};
void testpoint(struct d_complex);
struct d_complex c;
int numoutside = 0;

int main(){
int i, j;
double area, error, eps = 1.0e-5;

#pragma omp parallel for private(c, j) firstprivate(eps)
for (i=0; i<NPOINTS; i++) {

for (j=0; j<NPOINTS; j++) {
c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;
testpoint(c);

}
}

area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-
numoutside)/(double)(NPOINTS*NPOINTS);

error=area/(double)NPOINTS;
}

76

void testpoint(struct d_complex c){
struct d_complex z;

int iter;
double temp;

z=c;
for (iter=0; iter<MXITR; iter++){

temp = (z.r*z.r)-(z.i*z.i)+c.r;
z.i = z.r*z.i*2+c.i;
z.r = temp;
if ((z.r*z.r+z.i*z.i)>4.0) {
#pragma omp critical

numoutside++;
break;

}
}

}

• eps was not initialized
• Protect updates of numoutside
• Which value of c does testpoint()

see? Global or private?

77

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory Models and Point-to-Point Synchronization
– Programming your GPU with OpenMP

78

Memory Models …

l Multiple copies of a variable (such as 𝛾) may be present at various levels of cache, or in registers and
they may ALL have different values.

l So which value of 𝛾 is the one a thread should see at any point in a computation?

l Programming models for Multithreading support shared memory.
l All threads share an address space … but consider the variable 𝛾

Shared Memory (DRAM)

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core1

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

𝛾

𝛾 𝛾

𝛾 𝛾

𝛾

79

Memory Models …

l Multiple copies of a variable (such as 𝛾) may be present at various levels of cache, or in registers and
they may ALL have different values.

l So which value of 𝛾 is the one a thread should see at any point in a computation?

l Programming models for Multithreading support shared memory.
l All threads share an address space … but consider the variable 𝛾

Shared Memory (DRAM)

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core1

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

𝛾

𝛾 𝛾

𝛾 𝛾

𝛾

A memory
consistency model

(or “memory model”
for short) provides
the rules needed to

answer this question.

80

OpenMP and Relaxed Consistency

• Most (if not all) multithreading programming models (including OpenMP) supports
a relaxed-consistency memory model
– Threads can maintain a temporary view of shared memory that is not consistent with that of

other threads

– These temporary views are made consistent only at certain points in the program

– The operation that enforces consistency is called the flush operation*

*Note: in OpenMP 5.0 the name for the flush described here was changed to a ”strong flush”. This was done so we could
distinguish the traditional OpenMP flush (the strong flush) from the new synchronizing flushes (acquire flush and release flush).

81

Flush Operation

• Defines a sequence point at which a thread is guaranteed to see a consistent
view of memory*
– Previous read/writes by this thread have completed and are visible to other threads
– No subsequent read/writes by this thread have occurred

• A flush operation is analogous to a fence in other shared memory APIs

* This applies to the set of shared variables visible to a thread at the point the flush is encountered. We call this “the flush set”

82

Flush Example

l Flush forces data to be updated in memory so other threads see the most
recent value*

double A;

A = compute();

#pragma omp flush(A)

// flush to memory to make sure other
// threads can pick up the right value

Note: OpenMP’s flush is analogous to a fence in other shared memory APIs

* If you pass a list of variables to the flush directive, then that list is “the flush set”

83

What is the BIG DEAL with Flush?

• Compilers routinely reorder instructions implementing a program
– Can better exploit the functional units, keep the machine busy, hide memory latencies, etc.

• Compilers generally cannot move instructions:
– Past a barrier
– Past a flush on all variables

• But it can move them past a flush with a list of variables so long as those variables
are not accessed

• Keeping track of consistency when flushes are used can be confusing …
especially if “flush(list)” is used.

a26$($Bd'45#'-*+05'1"#624(1$'O2'0461$B'-*+05P',1#0'$14'2)4+2**]'0]$)561$(_#',(--#6#$4'456#2,0@'74'
e+04'#$0+6#0'4524'2'456#2,’0'N26(2;*#0'26#'/2,#')1$0(04#$4'b(45'/2($'/#/16]'

84

Flush and Synchronization

• A flush operation is implied by OpenMP synchronizations, e.g.,
– at entry/exit of parallel regions
– at implicit and explicit barriers
– at entry/exit of critical regions
….
(but not on entry to worksharing regions)

WARNING:
If you find your self wanting to write code with explicit flushes, stop and get help. It is very

difficult to manage flushes on your own. Even experts often get them wrong.

This is why we defined OpenMP constructs to automatically apply flushes most places where
you really need them.

85

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory Models and Point-to-Point Synchronization
– Programming your GPU with OpenMP

86

Irregular Parallelism
• Let’s call a problem “irregular” when one or both of the following hold:

– Data Structures are sparse
– Control structures are not basic for-loops

• Example: Traversing Linked lists:

• Using what we’ve learned so far, traversing a linked list in parallel using OpenMP
is difficult.

p = listhead ;
while (p) {
process(p);
p=p->next;

}

87

Exercise: Traversing linked lists
• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at each node.
• Parallelize this program selecting from the following list of constructs:

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
schedule(static[,chunk]) or schedule(dynamic[,chunk])
private(), firstprivate(), default(none)

• Hint: Just worry about the while loop that is timed inside main(). You
don’t need to make any changes to the “list functions”

88

Linked Lists with OpenMP (without tasks)
• See the file solutions/linked_notasks.c

while (p != NULL) {
p = p->next;
count++;

}
struct node *parr = (struct node*) malloc(count*sizeof(struct node));
p = head;
for(i=0; i<count; i++) {

parr[i] = p;
p = p->next;

}
#pragma omp parallel
{

#pragma omp for schedule(static,1)
for(i=0; i<count; i++)

processwork(parr[i]);
}

5)0*,&*012%#&)/&(,%13&(*&,-%&$(*?%.&$(3,

5):<&:)(*,%#&,)&%"6-&*).%&(*,)&"*&"##"<

!#)6%33&*).%3&(*&:"#"$$%$&+(,-&"&/)#&$)):

?&(1+%('#,'*,'@,%&+'.1*+')#"&'A5BC'DEF'G!HI'''@,%&+'@JKCL'')#$;/+&"'AM5A'01/+.'L

Number of
threads

Schedule
Default Static,1

1 48 seconds 45 seconds

2 39 seconds 28 seconds

89

Linked Lists with OpenMP (without tasks)

while (p != NULL) {
p = p->next;
count++;

}
struct node *parr = (struct node*) malloc(count*sizeof(struct node));
p = head;
for(i=0; i<count; i++) {

parr[i] = p;
p = p->next;

}
#pragma omp parallel
{

#pragma omp for schedule(static,1)
for(i=0; i<count; i++)

processwork(parr[i]);
}

5)0*,&*012%#&)/&(,%13&(*&,-%&$(*?%.&$(3,

5):<&:)(*,%#&,)&%"6-&*).%&(*,)&"*&"##"<

!#)6%33&*).%3&(*&:"#"$$%$&+(,-&"&/)#&$)):

?&(1+%('#,'*,'@,%&+'.1*+')#"&'A5BC'DEF'G!HI'''@,%&+'@JKCL'')#$;/+&"'AM5A'01/+.'L

Number of
threads

Schedule
Default Static,1

1 48 seconds 45 seconds

2 39 seconds 28 seconds

With so much code to add and three
passes through the data, this is really ugly.

There has got to be a better way to do this

• See the file solutions/linked_notasks.c

What are Tasks?

• Tasks are independent units of work

• Tasks are composed of:
– code to execute
– data to compute with

• Threads are assigned to perform the work of each
task.
– The thread that encounters the task construct may execute

the task immediately.
– The threads may defer execution until later

Serial Parallel

90

What are Tasks?

• The task construct includes a structured block of code

• Inside a parallel region, a thread encountering a task
construct will package up the code block and its data
for execution

• Tasks can be nested: i.e. a task may itself generate
tasks.

Serial Parallel

A common Pattern is to have one thread create the tasks while the
other threads wait at a barrier and execute the tasks

91

92

Single Worksharing Construct

• The single construct denotes a block of code that is executed by only one thread
(not necessarily the primary* thread).

• A barrier is implied at the end of the single block (can remove the barrier with a
nowait clause).

#pragma omp parallel
{

do_many_things();
#pragma omp single

{ exchange_boundaries(); }
do_many_other_things();

}

*This used to be called the “master thread”. The term “master” has been deprecated in OpenMP 5.1 and replaced with the term “primary”.

Task Directive

#pragma omp parallel
{
#pragma omp single
{

#pragma omp task
fred();

#pragma omp task
daisy();

#pragma omp task
billy();

}
}

One Thread
packages tasks

Create some threads

Tasks executed by
some thread in some
order

All tasks complete before this barrier is released

#pragma omp task [clauses]

structured-block

93

Exercise: Simple tasks
• Write a program using tasks that will “randomly” generate one of two strings:

– “I think “ “race” “car” “s are fun”
– “I think “ “car” “race” “s are fun”

• Hint: use tasks to print the indeterminate part of the output (i.e. the “race” or “car” parts).

• This is called a “Race Condition”. It occurs when the result of a program depends on
how the OS schedules the threads.

• NOTE: A “data race” is when threads “race to update a shared variable”. They produce
race conditions. Programs containing data races are undefined (in OpenMP but also
ANSI standards C++’11 and beyond).

#pragma omp parallel
#pragma omp task
#pragma omp single

94This exercise comes from Ruud van der Pas of Oracle

Racey Cars: Solution
#include <stdio.h>
#include <omp.h>
int main()
{ printf("I think");

#pragma omp parallel
{

#pragma omp single
{

#pragma omp task
printf(" car");

#pragma omp task
printf(" race");

}
}
printf("s");
printf(" are fun!\n");

} 95

Data Scoping with Tasks
• Variables can be shared, private or firstprivate with respect to task

• These concepts are a little bit different compared with threads:
– If a variable is shared on a task construct, the references to it inside the construct

are to the storage with that name at the point where the task was encountered

– If a variable is private on a task construct, the references to it inside the construct
are to new uninitialized storage that is created when the task is executed

– If a variable is firstprivate on a construct, the references to it inside the construct are
to new storage that is created and initialized with the value of the existing storage of
that name when the task is encountered

96 96

97

Data Scoping Defaults
• The behavior you want for tasks is usually firstprivate, because the task may not be

executed until later (and variables may have gone out of scope)
– Variables that are private when the task construct is encountered are firstprivate by default

• Variables that are shared in all constructs starting from the innermost enclosing parallel
construct are shared by default

#pragma omp parallel shared(A) private(B)
{

...
#pragma omp task

{
int C;
compute(A, B, C);

}
}

A is shared
B is firstprivate
C is private

97

98

Exercise: Traversing linked lists
• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at each node.
• Parallelize this program selecting from the following list of constructs:

#pragma omp parallel
#pragma omp single
#pragma omp task
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
private(), firstprivate()

• Hint: Just worry about the contents of main(). You
don’t need to make any changes to the “list functions”

99

Parallel Linked List Traversal
#pragma omp parallel
{
#pragma omp single
{
p = listhead ;
while (p) {

#pragma omp task firstprivate(p)
{
process (p);

}
p=next (p) ;

}
}

}

makes a copy of p
when the task is
packaged

Only one thread
packages tasks

99

100

When/Where are Tasks Complete?
• At thread barriers (explicit or implicit)

– all tasks generated inside a region must complete at the next barrier encountered by the threads
in that region. Common examples:
– Tasks generated inside a single construct: all tasks complete before exiting the barrier on the

single.
– Tasks generated inside a parallel region: all tasks complete before exiting the barrier at the end of

the parallel region.

• At taskwait directive
– i.e. Wait until all tasks defined in the current task have completed.

#pragma omp taskwait

– Note: applies only to tasks generated in the current task, not to “descendants” .

100

Example

101

#pragma omp parallel
{
#pragma omp single
{

#pragma omp task
fred();

#pragma omp task
daisy();

#pragma omp taskwait
#pragma omp task

billy();
}

}

fred() and daisy()
must complete before
billy() starts, but
this does not include
tasks created inside
fred() and daisy()

All tasks including those created
inside fred() and daisy() must
complete before exiting this barrier

101

Example

102

#pragma omp parallel
{
#pragma omp single nowait
{

#pragma omp task
fred();

#pragma omp task
daisy();

#pragma omp taskwait
#pragma omp task

billy();
}

}

The barrier at the end of the
single is expensive and not
needed since you get the
barrier at the end of the
parallel region. So use
nowait to turn it off.

All tasks including those created
inside fred() and daisy() must
complete before exiting this barrier

102

Example: Fibonacci numbers

• Fn = Fn-1 + Fn-2

• Inefficient O(n2) recursive
implementation!

int fib (int n)
{

int x,y;
if (n < 2) return n;

x = fib(n-1);
y = fib (n-2);
return (x+y);

}

Int main()
{

int NW = 5000;
fib(NW);

}
103

Parallel Fibonacci

104

• Binary tree of tasks

• Traversed using a recursive
function

• A task cannot complete until all
tasks below it in the tree are
complete (enforced with taskwait)

• x,y are local, and so by default
they are private to current task

– must be shared on child tasks so they
don’t create their own firstprivate
copies at this level!

int fib (int n)
{ int x,y;

if (n < 2) return n;

#pragma omp task shared(x)
x = fib(n-1);

#pragma omp task shared(y)
y = fib (n-2);

#pragma omp taskwait
return (x+y);

}

Int main()
{ int NW = 5000;

#pragma omp parallel
{

#pragma omp single
fib(NW);

}
} 104

Divide and Conquer

• Split the problem into smaller sub-problems; continue until the sub-problems can be
solved directly

n 3 Options for parallelism:
¨ Do work as you split

into sub-problems
¨ Do work only at the

leaves
¨ Do work as you

recombine

subproblem

subsolution

subproblem subproblem

problem

solution

subsolution subsolution

subproblem

subsolution

subproblem subproblem

subsolution subsolution

merge

merge merge

split

splitsplit

solve solvesolvesolve

105

106

Exercise: PI with tasks

• Go back to the original pi.c program
– Parallelize this program using OpenMP tasks

#pragma omp parallel
#pragma omp task
#pragma omp taskwait
#pragma omp single
double omp_get_wtime()
int omp_get_thread_num();
int omp_get_num_threads();

• Hint: first create a recursive pi program and verify that it works. Think about the
computation you want to do at the leaves. If you go all the way down to one
iteration per leaf-node, won’t you just swamp the system with tasks?

Program: OpenMP tasks
#include <omp.h>

static long num_steps = 100000000;
#define MIN_BLK 10000000
double pi_comp(int Nstart,int Nfinish,double step)
{ int i,iblk;

double x, sum = 0.0,sum1, sum2;
if (Nfinish-Nstart < MIN_BLK){

for (i=Nstart;i< Nfinish; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
}
else{

iblk = Nfinish-Nstart;
#pragma omp task shared(sum1)

sum1 = pi_comp(Nstart, Nfinish-iblk/2,step);
#pragma omp task shared(sum2)

sum2 = pi_comp(Nfinish-iblk/2, Nfinish, step);
#pragma omp taskwait

sum = sum1 + sum2;
}return sum;

} 107

int main ()
{

int i;
double step, pi, sum;
step = 1.0/(double) num_steps;
#pragma omp parallel
{

#pragma omp single
sum =

pi_comp(0,num_steps,step);
}
pi = step * sum;

}

Results*: Pi with tasks

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st SPMD SPMD
critical

PI Loop Pi tasks

1 1.86 1.87 1.91 1.87

2 1.03 1.00 1.02 1.00

3 1.08 0.68 0.80 0.76

4 0.97 0.53 0.68 0.52

108

109

Using Tasks

• Don’t use tasks for things already well supported by OpenMP
–e.g. standard do/for loops
– the overhead of using tasks is greater

• Don’t expect miracles from the runtime
–best results usually obtained where the user controls the number

and granularity of tasks

109

110

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory models and point-to-point Synchronization
– Programming your GPU with OpenMP

OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved execution across threads.

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.
SPMD pattern: Create threads with a parallel region and split up the work using the number of
threads and the thread ID.

double omp_get_wtime() Speedup and Amdahl's law. False sharing and other performance issues.

setenv OMP_NUM_THREADS N Setting the internal control variable for the default number of threads with an environment
variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.
Revisit interleaved execution.

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

default(none) Force explicit definition of each variable’s storage attribute

nowait Disabling implied barriers on workshare constructs, the high cost of barriers, and the flush
concept (but not the flush directive).

#pragma omp single Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 21 items

111

There is Much More to OpenMP than the Common Core

• Synchronization mechanisms
– locks, synchronizing flushes and several forms of atomic

• Data environment
– lastprivate, threadprivate, default(private|shared)

• Fine grained task control
– dependencies, tied vs. untied tasks, task groups, task loops …

• Vectorization constructs
– simd, uniform, simdlen, inbranch vs. nobranch, ….

• Map work onto an attached device (such as a GPU)
– target, teams distribute parallel for, target data …

• … and much more. The OpenMP 5.0 specification is over 618 pages!!!

112

Don’t become overwhelmed. Master the common core and move on to other
constructs when you encounter problems that require them.

113

OpenMP Organizations

• OpenMP Architecture Review Board (ARB) URL, the “owner” of the OpenMP
specification:

www.openmp.org

• OpenMP User’s Group (cOMPunity) URL:
www.compunity.org

!"#$%&'()'"*+$,(%&$#-"$./0$1&*$23456&%#78

9"):$*";%&"$#-"$;6#6<"$(;$3:"&45

Resources
• www.openmp.org has a wealth of helpful resources

114

Including a comprehensive collection of
examples of code using the OpenMP constructs

http://www.openmp.org/

To learn OpenMP:
• An exciting new book that Covers the

Common Core of OpenMP plus a few key
features beyond the common core that
people frequently use

• It’s geared towards people learning
OpenMP, but as one commentator put it
… everyone at any skill level should
read the memory model chapters.

• Available from MIT Press

115www.ompcore.com for code samples and the Fortran supplement

http://www.ompcore.com/

Books about OpenMP

116

A great book that covers
OpenMP features beyond

OpenMP 2.5

117

Background references

l A book about how to “think
parallel” with examples in
OpenMP, MPI and java

A great book that explores key
patterns with Cilk, TBB,
OpenCL, and OpenMP (by
McCool, Robison, and Reinders)

118

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory models and point-to-point Synchronization
– Programming your GPU with OpenMP

119

The Loop Worksharing Constructs

• The loop worksharing construct splits up loop iterations among the threads in a team

76("8."$+.6 6"("00'0

9
76("8."$+.6 3+($

3+($:;<=>;?@>;AAB9
@CDEF4EGHH:;B>

I
I

!""#$%"&'()*%($&+,-.

/01022.$3")

/4")()+&.$5"

The variable I is made “private” to each
thread by default. You could do this
explicitly with a “private(I)” clause

120

Loop Worksharing Constructs: The schedule clause

• The schedule clause affects how loop iterations are mapped onto threads
– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.
– schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.
– schedule(guided[,chunk])

– Threads dynamically grab blocks of iterations. The size of the block starts large and shrinks
down to size “chunk” as the calculation proceeds.

– schedule(runtime)
– Schedule and chunk size taken from the OMP_SCHEDULE environment variable (or the

runtime library) … vary schedule without a recompile!
– Schedule(auto)

– Schedule is left up to the runtime to choose (does not have to be any of the above).

OpenMP 4.5 added modifiers monotonic, nonmontonic and simd.

121

Schedule Clause When To Use

STATIC Pre-determined and predictable by the
programmer

DYNAMIC Unpredictable, highly variable work per
iteration

GUIDED Special case of dynamic to reduce
scheduling overhead

AUTO When the runtime can “learn” from
previous executions of the same loop

Loop Worksharing Constructs: The schedule clause

Least work at
runtime :
scheduling done
at compile-time

Most work at
runtime :
complex
scheduling logic
used at run-time

#pragma omp parallel for collapse(2)
for (int i=0; i<N; i++) {
for (int j=0; j<M; j++) {

.....
}

}

122

Nested Loops

• Will form a single loop of length NxM and then parallelize that.
• Useful if N is O(no. of threads) so parallelizing the outer loop makes

balancing the load difficult.

Number of loops
to be
parallelized,
counting from
the outside

• For perfectly nested rectangular loops we can parallelize multiple loops
in the nest with the collapse clause:

123

Sections Worksharing Construct
• The Sections worksharing construct gives a different structured block to each thread.

#pragma omp parallel
{

#pragma omp sections
{
#pragma omp section

x_calculation();
#pragma omp section

y_calculation();
#pragma omp section

z_calculation();
}

}

By default, there is a barrier at the end of the “omp sections”. Use the “nowait” clause to turn off the barrier.

Array Sections with Reduce
#include <stdio.h>
#define N 100
void init(int n, float (*b)[N]);
int main(){
int i,j; float a[N], b[N][N]; init(N,b);
for(i=0; i<N; i++) a[i]=0.0e0;

#pragma omp parallel for reduction(+:a[0:N]) private(j)
for(i=0; i<N; i++){

for(j=0; j<N; j++){
a[j] += b[i][j];

}
}
printf(" a[0] a[N-1]: %f %f\n", a[0], a[N-1]);
return 0;

124

Works the same as any other reduce … a
private array is formed for each thread,
element wise combination across threads
and then with original array at the end

Exercise
• Go back to your parallel mandel.c program.
• Using what we’ve learned in this block of slides can you improve the runtime?

125

Optimizing mandel.c
wtime = omp_get_wtime();

#pragma omp parallel for collapse(2) schedule(runtime) firstprivate(eps) private(j,c)
for (i=0; i<NPOINTS; i++) {
for (j=0; j<NPOINTS; j++) {
c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;
testpoint(c);

}
}
wtime = omp_get_wtime() - wtime;

126

$ export OMP_SCHEDULE=“dynamic,100”
$./mandel_par

default schedule 0.48 secs
schedule(dynamic,100) 0.39 secs
collapse(2) schedule(dynamic,100) 0.34 secs

Four threads on a dual core Apple laptop (Macbook air … 2.2 Ghz Intel Core i7 with 8 GB memory)
and the gcc version 9.1. Times are the minimum time from three runs

127

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory models and point-to-point Synchronization
– Programming your GPU with OpenMP

128

Synchronization

• High level synchronization included in the common core:
–critical
–barrier

• Other, more advanced, synchronization operations:
–atomic
–ordered
– flush
– locks (both simple and nested)

4)2,&(+215"%1+2$1*$-*'#$%+$1.6+*'$+(#'($,+2*%("12%*$
J'%K''2$%&('"#*$"2#$%+$6(+%',%$",,'**$%+$*&"('#$#"%"

Covered in this section

Covered earlier

129

Synchronization: Atomic

• Atomic provides mutual exclusion but only applies to the update of a memory
location (the update of X in the following example)

#pragma omp parallel

{
double tmp, B;

B = DOIT();

#pragma omp atomic
X += big_ugly(B);

}

#pragma omp parallel

{
double B;

B = DOIT();

#pragma omp atomic
X += big_ugly(B);

}

130

Synchronization: Atomic

• Atomic provides mutual exclusion but only applies to the update of a
memory location (the update of X in the following example)

#pragma omp parallel

{
double B, tmp;

B = DOIT();

tmp = big_ugly(B);

#pragma omp atomic
X += tmp;

}

D%+.1,$+20)$6(+%',%*$%&'$
('"#L-6#"%'$+3$M

The OpenMP 3.1 Atomics (1 of 2)
• Atomic was expanded to cover the full range of common scenarios where you need to protect a

memory operation so it occurs atomically:
pragma omp atomic [read | write | update | capture]

131

• Atomic can protect loads
pragma omp atomic read

v = x;

• Atomic can protect stores
pragma omp atomic write

x = expr;

• Atomic can protect updates to a storage location (this is the default behavior … i.e. when you don’t
provide a clause)

pragma omp atomic update
x++; or ++x; or x--; or –x; or
x binop= expr; or x = x binop expr;

This is the
original OpenMP

atomic

The OpenMP 3.1 Atomics (2 of 2)
• Atomic can protect the assignment of a value (its capture) AND an associated update operation:

pragma omp atomic capture
statement or structured block

132

• Where the statement is one of the following forms:
v = x++; v = ++x; v = x--; v = –x; v = x binop expr;

• Where the structured block is one of the following forms:

{v = x; x binop = expr;} {x binop = expr; v = x;}
{v=x; x=x binop expr;} {X = x binop expr; v = x;}
{v = x; x++;} {v=x; ++x:}
{++x; v=x:} {x++; v = x;}
{v = x; x--;} {v= x; --x;}
{--x; v = x;} {x--; v = x;}

The capture semantics in atomic were added to map onto common hardware
supported atomic operations and to support modern lock free algorithms

133

Synchronization: Lock Routines
• Simple Lock routines:

– A simple lock is available if it is unset.
– omp_init_lock(), omp_set_lock(),

omp_unset_lock(), omp_test_lock(), omp_destroy_lock()

• Nested Locks
– A nested lock is available if it is unset or if it is set but owned by the thread

executing the nested lock function
– omp_init_nest_lock(), omp_set_nest_lock(), omp_unset_nest_lock(),

omp_test_nest_lock(), omp_destroy_nest_lock()

Note: a thread always accesses the most recent copy of the lock,
so you don’t need to use a flush on the lock variable.

D$0+,N$1.601'*$"$.'.+()$
3'2,'$:"$“30-*&”B$+3$"00$
%&('"#$/1*1J0'$/"(1"J0'*

Locks with hints were added in OpenMP 4.5 to suggest a lock strategy based on
intended use (e.g. contended, uncontended, speculative, unspeculative)

int i, ix, even_count = 0, odd_count = 0;
omp_lock_t odd_lck, even_lck;
omp_init_lock(&odd_lck);
omp_init_lock(&even_lck);

#pragma omp parallel for private(ix) shared(even_count, odd_count)
for(i=0; i<N; i++){

ix = (int) x[i]; //truncate to int

if(((int) x[i])%2 == 0) {
omp_set_lock(&even_lck);

even_count++;
omp_unset_lock(&even_lck);

}
else{

omp_set_lock(&odd_lck);
odd_count++;

omp_unset_lock(&odd_lck);
}

}
omp_destroy_lock(&odd_lck);
omp_destroy_lock(&even_lck);

}
134

Synchronization: Simple Locks Example
• Count odds and evens in an input array(x) of N random values.

Free-up storage when done.

One lock per case … even and odd

Enforce mutual exclusion updates,
but in parallel for each case.

Exercise
• In the file hist.c, we provide a program that generates a large array of random numbers

and then generates a histogram of values.

• This is a ”quick and informal” way to test a random number generator … if all goes well
the bins of the histogram should be the same size.

• Parallelize the filling of the histogram You must assure that your program is race free
and gets the same result as the sequential program.

• Using everything we’ve covered today, manage updates to shared data in two different
ways. Try to minimize the time to generate the histogram.

• Time ONLY the assignment to the histogram. Can you beat the sequential time?

135

136

Histogram Program: Critical section

• A critical section means that only one thread at a time can update a histogram bin …
but this effectively serializes the loops and adds huge overhead as the runtime
manages all the threads waiting for their turn for the update.

#pragma omp parallel for
for(i=0;i<NVALS;i++){

ival = (int) x[i];
#pragma omp critical

hist[ival]++;
}

Easy to write and
correct, but terrible
performance

137

Histogram program: one lock per histogram bin
• Example: conflicts are rare, but to play it safe, we must assure mutual exclusion for

updates to histogram elements.

#pragma omp parallel for
for(i=0;i<NBUCKETS; i++){

omp_init_lock(&hist_locks[i]); hist[i] = 0;
}
#pragma omp parallel for
for(i=0;i<NVALS;i++){

ival = (int) x[i];
omp_set_lock(&hist_locks[ival]);

hist[ival]++;
omp_unset_lock(&hist_locks[ival]);

}

#pragma omp parallel for
for(i=0;i<NBUCKETS; i++)
omp_destroy_lock(&hist_locks[i]); Free-up storage when done.

One lock per element of hist

Enforce mutual
exclusion on update
to hist array

138

Histogram program: reduction with an array

• We can give each thread a copy of the histogram, they can fill them in parallel, and
then combine them when done

#pragma omp parallel for reduction(+:hist[0:Nbins])
for(i=0;i<NVALS;i++){

ival = (int) x[i];
hist[ival]++;

}
Easy to write and correct, Uses a lot of
memory on the stack, but its fast …
sometimes faster than the serial method.

sequential 0.0019 secs
critical 0.079 secs
Locks per bin 0.029 secs
Reduction, replicated histogram array 0.00097 secs

1000000 random values in X sorted into 50 bins. Four threads on a dual core Apple laptop
(Macbook air … 2.2 Ghz Intel Core i7 with 8 GB memory) and the gcc version 9.1. Times are
for the above loop only (we do not time set-up for locks, destruction of locks or anything else)

139

Sometimes when working with multiple interacting locks, you have
to pay attention to the locking orders

Lock Example from Gafort (SpecOMP’2001)

• Genetic algorithm in Fortran
• Most “interesting” loop: shuffle the population.

– Original loop is not parallel; performs pair-wise swap of an array element with
another, randomly selected element. There are 40,000 elements.

– Parallelization idea:
– Perform the swaps in parallel
– Need to prevent simultaneous access to same array element: use one lock per array

element à 40,000 locks.

169

!$OMP PARALLEL PRIVATE(rand, iother, itemp, temp, my_cpu_id)
my_cpu_id = 1

!$ my_cpu_id = omp_get_thread_num() + 1
!$OMP DO

DO j=1,npopsiz-1
CALL ran3(1,rand,my_cpu_id,0)
iother=j+1+DINT(DBLE(npopsiz-j)*rand)

!$ IF (j < iother) THEN
!$ CALL omp_set_lock(lck(j))
!$ CALL omp_set_lock(lck(iother))
!$ ELSE
!$ CALL omp_set_lock(lck(iother))
!$ CALL omp_set_lock(lck(j))
!$ END IF

itemp(1:nchrome)=iparent(1:nchrome,iother)
iparent(1:nchrome,iother)=iparent(1:nchrome,j)
iparent(1:nchrome,j)=itemp(1:nchrome)
temp=fitness(iother)
fitness(iother)=fitness(j)
fitness(j)=temp

!$ IF (j < iother) THEN
!$ CALL omp_unset_lock(lck(iother))
!$ CALL omp_unset_lock(lck(j))
!$ ELSE
!$ CALL omp_unset_lock(lck(j))
!$ CALL omp_unset_lock(lck(iother))
!$ END IF

END DO
!$OMP END DO
!$OMP END PARALLEL

Parallel Loop
In shuffle.f
of Gafort

Exclusive access
to array
elements.

Ordered locking
prevents
deadlock.

141

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory models and point-to-point Synchronization
– Programming your GPU with OpenMP

142

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory models and point-to-point Synchronization
– Programming your GPU with OpenMP

143

Data Sharing: Threadprivate

• Makes global data private to a thread
– Fortran: COMMON blocks
– C: File scope and static variables, static class members

• Different from making them PRIVATE
– with PRIVATE global variables are masked.
– THREADPRIVATE preserves global scope within each thread

• Threadprivate variables can be initialized using COPYIN or at time of definition
(using language-defined initialization capabilities)

144

A Threadprivate Example (C)

int counter = 0;
#pragma omp threadprivate(counter)

int increment_counter()
{

counter++;
return (counter);

}

Use threadprivate to create a counter for each thread.

145

Data Copying: Copyin

parameter (N=1000)
common/buf/A(N)

!$OMP THREADPRIVATE(/buf/)

!$ Initialize the A array
call init_data(N,A)

!$OMP PARALLEL COPYIN(A)

… Now each thread sees threadprivate array A initialized
… to the global value set in the subroutine init_data()

!$OMP END PARALLEL

end

You initialize threadprivate data using a copyin clause.

146

Exercise: Monte Carlo Calculations
Using random numbers to solve tough problems

• Sample a problem domain to estimate areas, compute probabilities, find optimal
values, etc.

• Example: Computing π with a digital dart board:

l Throw darts at the circle/square.
l Chance of falling in circle is proportional to

ratio of areas:
Ac = r2 * π
As = (2*r) * (2*r) = 4 * r2

P = Ac/As = π /4
l Compute π by randomly choosing points; π is

four times the fraction that falls in the circle

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000 π = 3.148

147

Exercise: Monte Carlo pi (cont)

• We provide three files for this exercise
– pi_mc.c: the Monte Carlo method pi program
– random.c: a simple random number generator
– random.h: include file for random number generator

• Create a parallel version of this program.
• Run it multiple times with varying numbers of threads.
• Is the program working correctly? Is there anything wrong?

148

Parallel Programmers love Monte Carlo algorithms

#include “omp.h”
static long num_trials = 10000;
int main ()
{

long i; long Ncirc = 0; double pi, x, y;
double r = 1.0; // radius of circle. Side of squrare is 2*r
seed(0,-r, r); // The circle and square are centered at the origin
#pragma omp parallel for private (x, y) reduction (+:Ncirc)
for(i=0;i<num_trials; i++)
{

x = random(); y = random();
if (x*x + y*y) <= r*r) Ncirc++;

}

pi = 4.0 * ((double)Ncirc/(double)num_trials);
printf("\n %d trials, pi is %f \n",num_trials, pi);

}

Embarrassingly parallel: the
parallelism is so easy its
embarrassing.

Add two lines and you have a
parallel program.

149

Random Numbers: Linear Congruential Generator (LCG)
• LCG: Easy to write, cheap to compute, portable, OK quality

l If you pick the multiplier and addend correctly, LCG has a period of PMOD.
l Picking good LCG parameters is complicated, so look it up (Numerical Recipes is

a good source). I used the following:
u MULTIPLIER = 1366
u ADDEND = 150889
u PMOD = 714025

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

150

LCG code

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;
double random ()
{

long random_next;

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

return ((double)random_next/(double)PMOD);
}

Seed the pseudo random
sequence by setting
random_last

151

Running the PI_MC program with LCG generator

0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

LCG - one thread

LCG, 4 threads,
trail 1
LCG 4 threads,
trial 2
LCG, 4 threads,
trial 3

Log 10 R
elative error

Log10 number of samples

Run the same
program the
same way and
get different
answers!

That is not
acceptable!

Issue: my LCG
generator is not
threadsafe

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core laptop (Intel
T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP.

152

Exercise: Monte Carlo pi (cont)

• Create a threadsafe version of the monte carlo pi program

• Do not change the interfaces to functions in random.c
– This is an exercise in modular software … why should a user of your parallel random number

generator have to know any details of the generator or make any changes to how the generator
is called?

– The random number generator must be thread-safe

• Verify that the program is thread safe by running multiple times for a fixed number
of threads.

• Any concerns with the program behavior?

153

LCG code: threadsafe version

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;
#pragma omp threadprivate(random_last)
double random ()
{

long random_next;

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

return ((double)random_next/(double)PMOD);
}

random_last carries state between
random number computations,

To make the generator threadsafe,
make random_last threadprivate so
each thread has its own copy.

154

Thread Safe Random Number Generators

Log
10 R

elative error

Log10 number of samples

Thread safe version gives the
same answer each time you
run the program.

But for large number of
samples, its quality is lower
than the one thread result!

Why?

0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6 LCG - one

thread
LCG 4 threads,
trial 1
LCT 4 threads,
trial 2
LCG 4 threads,
trial 3
LCG 4 threads,
thread safe

155

Pseudo Random Sequences
• Random number Generators (RNGs) define a sequence of pseudo-random numbers of length

equal to the period of the RNG

l In a typical problem, you grab a subsequence of the RNG range

Seed determines starting point

l Grab arbitrary seeds and you may generate overlapping sequences
u E.g. three sequences … last one wraps at the end of the RNG period.

l Overlapping sequences = over-sampling and bad statistics … lower quality or even wrong answers!

Thread 1
Thread 2

Thread 3

156

Parallel random number generators
• Multiple threads cooperate to generate and use random numbers.
• Solutions:

– Replicate and Pray
– Give each thread a separate, independent generator
– Have one thread generate all the numbers.
– Leapfrog … deal out sequence values “round robin” as if dealing a

deck of cards.
– Block method … pick your seed so each threads gets a distinct

contiguous block.

• Other than “replicate and pray”, these are difficult to implement. Be
smart … get a math library that does it right.

If done right, can
generate the
same sequence
regardless of the
number of
threads …

Nice for
debugging, but
not really needed
scientifically.

Intel’s Math kernel Library supports a wide range of
parallel random number generators.

For an open alternative, the state of the art is the Scalable Parallel
Random Number Generators Library (SPRNG): http://www.sprng.org/

from Michael Mascagni’s group at Florida State University.

http://www.sprng.org/

157

MKL Random Number Generators (RNG)

#define BLOCK 100
double buff[BLOCK];
VSLStreamStatePtr stream;

vslNewStream(&ran_stream, VSL_BRNG_WH, (int)seed_val);

vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream,
BLOCK, buff, low, hi)

vslDeleteStream(&stream);

l MKL includes several families of RNGs in its vector statistics library.
l Specialized to efficiently generate vectors of random numbers

Initialize a
stream or
pseudo
random
numbers

Select type of RNG
and set seed

Fill buff with BLOCK pseudo rand.
nums, uniformly distributed with values
between lo and hi.

Delete the stream when you are done

158

Wichmann-Hill Generators (WH)

• WH is a family of 273 parameter sets each defining a non-overlapping and
independent RNG.

• Easy to use, just make each stream threadprivate and initiate RNG stream so each
thread gets a unique WG RNG.

VSLStreamStatePtr stream;

#pragma omp threadprivate(stream)

…

vslNewStream(&ran_stream, VSL_BRNG_WH+Thrd_ID, (int)seed);

159

Independent Generator for each thread

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

WH one
thread
WH, 2
threads
WH, 4
threads

Log
10 R

elative error

Log10 number of samples
Notice that once
you get beyond
the high error,
small sample
count range,
adding threads
doesn’t
decrease quality
of random
sampling.

160

>"62B/2'1/"'0($B*#
Q'''$456#2,0'D'1/"CB#4C$+/C456#2,0OPG
(0##,'D'&%!8U%H^.7&^7J<G'''''UU'e+04'"()9'2'0##,
"0##,SFT'D'(0##,G
/+*4C$'D'%H^.7&^7J<G
-16'O('D'EG'('?'$456#2,0G'VV(P
Q
(0##,'D'O+$0(B$#,'*1$B'*1$BPOO%H^.7&^7J<'X'(0##,P'f'&%!8PG
"0##,S(T'D'(0##,G
/+*4C$'D'O/+*4C$'X'%H^.7&^7J<P'f'&%!8G

Z

Z
62$,1/C*204'D'O+$0(B$#,'*1$B'*1$BP'"0##,S(,TG

Leap Frog Method
• Interleave samples in the sequence of pseudo random numbers:

– Thread i starts at the ith number in the sequence
– Stride through sequence, stride length = number of threads.

• Result … the same sequence of values regardless of the number of threads.

C*%&,-#%".&
6)1:0,%3&)//3%,3&
"*.&3,#(.%.&
10$,(:$(%#

NGD'>/%3'J..&,.'O'M'P1(%'
%#'7&&;'%3/,<('(/$;+&

Q*)3'%3"&*.'(%#"&('#22(&%'(%*"%/,<'
;#/,%'/,%#'/%('%3"&*.;"/4*%&'R+*(%'
"*,.#$S'4*+1&

161

Same sequence with many threads.
• We can use the leapfrog method to generate the same

answer for any number of threads

Steps One thread 2 threads 4 threads

1000 3.156 3.156 3.156

10000 3.1168 3.1168 3.1168

100000 3.13964 3.13964 3.13964

1000000 3.140348 3.140348 3.140348

10000000 3.141658 3.141658 3.141658

Used the MKL library with two generator streams per computation: one for the x values (WH) and one for the
y values (WH+1). Also used the leapfrog method to deal out iterations among threads.

162

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory models and point-to-point Synchronization
– Programming your GPU with OpenMP

163

OpenMP Memory Model
l OpenMP supports a shared memory model
l All threads share an address space, where variable can be stored or retrieved:

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

l Threads maintain their own temporary view of memory as well … the details of which are not
defined in OpenMP but this temporary view typically resides in caches, registers, write-buffers, etc.

a

a

.*.*.

164

Flush Operation
• Defines a sequence point at which a thread enforces a consistent view of

memory.

• For variables visible to other threads and associated with the flush
operation (the flush-set)
– The compiler can’t move loads/stores of the flush-set around a flush:
– All previous read/writes of the flush-set by this thread have completed
– No subsequent read/writes of the flush-set by this thread have occurred

– Variables in the flush set are moved from temporary storage to shared memory.
– Reads of variables in the flush set following the flush are loaded from shared

memory.

IMPORTANT POINT: The flush makes the calling threads temporary view match the
view in shared memory. Flush by itself does not force synchronization.

165

Memory Consistency: Flush Example

l Flush forces data to be updated in memory so other threads see the most
recent value

double A;

A = compute();

#pragma omp flush(A)

// flush to memory to make sure other
// threads can pick up the right value

Note: OpenMP’s flush is analogous to a fence in other shared memory APIs

Flush without a list: flush set is all
thread visible variables

Flush with a list: flush set is the list of
variables

166

Flush and Synchronization

• A flush operation is implied by OpenMP synchronizations, e.g.,
– at entry/exit of parallel regions
– at implicit and explicit barriers
– at entry/exit of critical regions
– whenever a lock is set or unset
….
(but not at entry to worksharing regions or entry/exit of primary* regions)

*the term “master” has been deprecated in OpenMP 5.1 and replaced with the term “primary”.

167

Example: prod_cons.c

int main()
{
double *A, sum, runtime; int flag = 0;

A = (double *) malloc(N*sizeof(double));

runtime = omp_get_wtime();

fill_rand(N, A); // Producer: fill an array of data

sum = Sum_array(N, A); // Consumer: sum the array

runtime = omp_get_wtime() - runtime;

printf(" In %lf secs, The sum is %lf \n",runtime,sum);
}

• Parallelize a producer/consumer program
– One thread produces values that another thread consumes.

– The key is to
implement
pairwise
synchronization
between threads

– Often used with a
stream of
produced values
to implement
“pipeline
parallelism”

168

Pairwise Synchronization in OpenMP

• OpenMP lacks synchronization constructs that work between pairs of threads.
• When needed, you have to build it yourself.
• Pairwise synchronization

– Use a shared flag variable
– Reader spins waiting for the new flag value
– Use flushes to force updates to and from memory

169

Exercise: Producer/Consumer
int main()
{

double *A, sum, runtime; int numthreads, flag = 0;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{

fill_rand(N, A);

flag = 1;

}
#pragma omp section
{

while (flag == 0){

}

sum = Sum_array(N, A);
}

}
}

&+4'45#'-*+05#0'($'45#'6(B54'"*2)#0'41'
/29#'45(0'"61B62/'62)#g-6##@

81']1+'$##,'2$]'145#6'
0]$)561$(_24(1$')1$046+)40'41'/29#'
45(0'b169c

170

Solution (try 1): Producer/Consumer
int main()
{

double *A, sum, runtime; int numthreads, flag = 0;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{

fill_rand(N, A);
#pragma omp flush
flag = 1;
#pragma omp flush (flag)

}
#pragma omp section
{

#pragma omp flush (flag)
while (flag == 0){

#pragma omp flush (flag)
}
#pragma omp flush
sum = Sum_array(N, A);

}
}

}

H0#'-*2B'41'L(B$2*'b5#$'45#'
h"61,+)#,i'N2*+#'(0'6#2,]

j*+05'-16)#0'6#-6#05'41'/#/16]G''
B+262$4##0'4524'45#'145#6'456#2,'
0##0'45#'$#b'N2*+#'1-'K

:14()#']1+'/+04'"+4'45#'-*+05'($0(,#'45#'
b5(*#'*11"'41'/29#'0+6#'45#'+",24#,'-*2B'
N26(2;*#'(0'0##$

j*+05'$##,#,'1$';145'h6#2,#6i'2$,'hb6(4#6i'
0(,#0'1-'45#')1//+$()24(1$

This program works with the x86 memory model (loads and stores use relaxed
atomics), but it technically has a race … on the store and later load of flag

The OpenMP 3.1 Atomics (1 of 2)
• Atomic was expanded to cover the full range of common scenarios where you need

to protect a memory operation so it occurs atomically:
pragma omp atomic [read | write | update | capture]

171

• Atomic can protect loads
pragma omp atomic read

v = x;

• Atomic can protect stores
pragma omp atomic write

x = expr;

• Atomic can protect updates to a storage location (this is the default
behavior … i.e. when you don’t provide a clause)

pragma omp atomic update
x++; or ++x; or x--; or –x; or
x binop= expr; or x = x binop expr;

This is the
original OpenMP

atomic

The OpenMP 3.1 Atomics (2 of 2)
• Atomic can protect the assignment of a value (its capture) AND an associated

update operation:
pragma omp atomic capture

statement or structured block

172

• Where the statement is one of the following forms:
v = x++; v = ++x; v = x--; v = –x; v = x binop expr;

• Where the structured block is one of the following forms:

{v = x; x binop = expr;} {x binop = expr; v = x;}
{v=x; x=x binop expr;} {X = x binop expr; v = x;}
{v = x; x++;} {v=x; ++x:}
{++x; v=x:} {x++; v = x;}
{v = x; x--;} {v= x; --x;}
{--x; v = x;} {x--; v = x;}

The capture semantics in atomic were added to map onto common hardware
supported atomic operations and to support modern lock free algorithms

Atomics and Synchronization Flags

173

int main()
{ double *A, sum, runtime;

int numthreads, flag = 0, flg_tmp;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{ fill_rand(N, A);

#pragma omp flush
#pragma omp atomic write

flag = 1;
#pragma omp flush (flag)

}
#pragma omp section
{ while (1){

#pragma omp flush(flag)
#pragma omp atomic read

flg_tmp= flag;
if (flg_tmp==1) break;

}
#pragma omp flush
sum = Sum_array(N, A);

}
}

}

This program is truly race
free … the reads and
writes of flag are
protected so the two
threads cannot conflict

Still painful and error
prone due to all of the
flushes that are required

OpenMP 4.0 Atomic: Sequential consistency

• Sequential consistency:
– The order of loads and stores in a race-free program appear in some interleaved order and

all threads in the team see this same order.
• OpenMP 4.0 added an optional clause to atomics

– #pragma omp atomic [read | write | update | capture] [seq_cst]
• In more pragmatic terms:

– If the seq_cst clause is included, OpenMP adds a flush without an argument list to the
atomic operation so you don’t need to.

• In terms of the C++’11 memory model:
– Use of the seq_cst clause makes atomics follow the sequentially consistent memory order.
– Leaving off the seq_cst clause makes the atomics relaxed.

174

4.0

Advice to programmers: save yourself a world of hurt … let OpenMP take
care of your flushes for you whenever possible … use seq_cst

Atomics and Synchronization Flags (4.0)

175

int main()
{ double *A, sum, runtime;

int numthreads, flag = 0, flg_tmp;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{

#pragma omp section
{ fill_rand(N, A);

#pragma omp atomic write seq_cst
flag = 1;

}
#pragma omp section
{ while (1){

#pragma omp atomic read seq_cst
flg_tmp= flag;

if (flg_tmp==1) break;
}

sum = Sum_array(N, A);
}

}
}

This program is truly race
free … the reads and
writes of flag are protected
so the two threads cannot
conflict – and you do not
use any explicit flush
constructs (OpenMP does
them for you)

176

Outline
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Data Environment
• Memory Model
• Irregular Parallelism and Tasks
• Recap
• Beyond the Common Core:

– Worksharing Revisited
– Synchronization Revisited: Options for Mutual exclusion
– Thread Affinity and Data Locality
– Thread Private Data
– Memory models and point-to-point Synchronization
– Programming your GPU with OpenMP

How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)

177

extern void reduce(__local float*, __global float*);

__kernel void pi(const int niters, float step_size,
__local float* l_sums, __global float* p_sums)

{
int n_wrk_items = get_local_size(0);
int loc_id = get_local_id(0);
int grp_id = get_group_id(0);
float x, accum = 0.0f; int i,istart,iend;

istart = (grp_id * n_wrk_items + loc_id) * niters;
iend = istart+niters;

for(i= istart; i<iend; i++){
x = (i+0.5f)*step_size; accum += 4.0f/(1.0f+x*x); }

l_sums[local_id] = accum;
barrier(CLK_LOCAL_MEM_FENCE);
reduce(l_sums, p_sums);

}

1. Turn source code into a scalar
work-item

2. Map work-items onto
an N dim index space.

4. Run on hardware
designed around
the same SIMT

execution model

3. Map data structures
onto the same index

spaceThis is OpenCL kernel code … the sort
of code the OpenMP compiler generates

on your behalf

Third Party names are the property of their owners

How do we execute code on a GPU:
OpenCL and CUDA nomenclature

178

extern void reduce(__local float*, __global float*);

__kernel void pi(const int niters, float step_size,
__local float* l_sums, __global float* p_sums)

{
int n_wrk_items = get_local_size(0);
int loc_id = get_local_id(0);
int grp_id = get_group_id(0);
float x, accum = 0.0f; int i,istart,iend;

istart = (grp_id * n_wrk_items + loc_id) * niters;
iend = istart+niters;

for(i= istart; i<iend; i++){
x = (i+0.5f)*step_size; accum += 4.0f/(1.0f+x*x); }

l_sums[local_id] = accum;
barrier(CLK_LOCAL_MEM_FENCE);
reduce(l_sums, p_sums);

}

Turn source code into a scalar
work-item (a CUDA thread)

Organize work-items into
work-groups and map onto an an
N dim index space. CUDA calls a

work-group a thread-block

OpenCL index space is
called an NDRange.

CUDA calls this a GridThis code defines a kernel

Submit a
kernel to an
OpenCL
command
queue or a
CUDA stream

Third Party names are the property of their owners

It’s called SIMT, but GPUs are really vector-architectures with a block of work-
items executing together (a subgroup in OpenCL or a warp with CUDA)

A Generic Host/Device Platform Model

• One Host and one or more Devices
– Each Device is composed of one or more Compute Units
– Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Third party names are the property of their owners. 179

180

OpenMP Basic Definitions: Solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er

CPU cores SIMD units GPU cores

Shared address space (NUMA)

H
W

180

§ Simply add a target construct

–Transfer control of execution to a SINGLE device thread
–Only one team of threads workshares the loop

Host thread

Device initial
thread

Device
thread
team

#pragma omp target
#pragma omp parallel for
for (i=0;i<N;i++)

…

Accelerated workshare v1.0

181

The target data environment
• Remember: distinct memory spaces on host and device.

• OpenMP uses a combination of implicit and explicit memory movement.

• Data may move between the host and the device in well defined places:
– Firstly, at the beginning and end of a target region:

#pragma omp target
{ // Data may move here

…
} // and here

– We’ll discuss the other places later…

182

Default Data Mapping:
implicit movement with a target region

• Scalar variables:
– Examples:
– int N; double x;

– OpenMP implicitly maps scalar variables as firstprivate
– A new value per work-item initialized with the original value (in OpenCL nomenclature, the

firstprivate goes in private memory).

– The variable is not copied back to the host at the end of the target region.

– OpenMP target regions for GPUs execute with CUDA/OpenCL, and a firstprivate
scalar can be launched as a parameter to a kernel function without the overhead of
setting up a variable in device memory.

183

• Non-scalar variables:
– Must have a complete type.

– Example: fixed sized (stack) array:
– double A[1000];

– Copied to the device at the start of the target region, and copied back at the end. In
OpenCL nomenclature, these are placed in device global memory.

– A new value is created in the target region and initialized with the original data, but it
is shared between threads on the device. Data is copied back to the host at the end of
the target region.

– OpenMP calls this mapping tofrom

184

Default Data Mapping:
implicit movement with a target region

• Pointers and their data:
– Example: arrays allocated on the heap
– double *A = malloc(sizeof(double)*1000);

– The pointer value will be mapped.

– But the data it points to will not be mapped by default.

185

Default Data Mapping:
implicit movement with a target region

The target data environment

Host thread
Generating Task

Initial task

Target task

#pragma omp target
{

target region,
can use A, B and N

}

Device Initial
thread

Host thread
waits for the

task region to
complete

float A[N], B[N]; A, B and N
mapped to the

device

the arrays
A and B

mapped back to
the host

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017

Scalars and statically allocated
arrays are moved onto the device

by default before execution

Only the statically allocated arrays
are moved back to the host after

the target region completes

186

Default Data Sharing: example
int main(void) {

int N = 1024;
double A[N], B[N];

#pragma omp target
{

for (int ii = 0; ii < N; ++ii) {

A[ii] = A[ii] + B[ii];

}

} // end of target region
}

1. Variables created in host
memory.

2. Scalar N and stack arrays
A and B are copied to device

memory. Execution
transferred to device.

3. ii is private on the device
as it’s declared within the

target region

4. Execution on the device.

5. stack arrays A and B are
copied from device memory

back to the host. Host
resumes execution.

187

Explicit Data Sharing

• Previously, we described the rules for implicit data movement.

• We explicitly control the movement of data using the map clause.

• Data allocated on the heap needs to explicitly copied to/from the device:

int main(void) {
int ii=0, N = 1024;
int* A = malloc(sizeof(int)*N);

#pragma omp target
{
// N, ii and A all exist here
// The data that A points to (*A , A[ii]) DOES NOT exist here!

}
}

188

Controlling data movement

• The various forms of the map clause
– map(to:list): On entering the region, variables in the list are initialized on the device using

the original values from the host (host to device copy).
– map(from:list): At the end of the target region, the values from variables in the list are

copied into the original variables (device to host copy). On entering the region, initial value
of the variable is not initialized.
– map(tofrom:list): the effect of both a map-to and a map-from (host to device copy at start

of region, device to host copy at end)
– map(alloc:list): On entering the region, data is allocated and uninitialized on the device.
– map(list): equivalent to map(tofrom:list).

• For pointers you must use array section notation ..
– map(to:a[0:N]). Notation is A[lower-bound : length]

int i, a[N], b[N], c[N];
#pragma omp target map(to:a,b) map(tofrom:c)

Data movement
defined from the
host perspective.

189

Moving arrays with the map clause

int main(void) {
int N = 1024;
int* A = malloc(sizeof(int)*N);

#pragma omp target map(A[0:N])
{
// N, ii and A all exist here
// The data that A points to DOES exist here!

}
}

Default mapping
map(tofrom: A[0:N])

Copy at start and end of
target region.

190

teams and distribute constructs

• The teams construct
– Similar to the parallel construct
– It starts a league of thread teams
– Each team in the league starts as one initial thread – a team of one
– Threads in different teams cannot synchronize with each other
– The construct must be “perfectly” nested in a target construct

• The distribute construct
– Similar to the for construct
– Loop iterations are workshared across the initial threads in a league
– No implicit barrier at the end of the construct
– dist_schedule(kind[, chunk_size])
– If specified, scheduling kind must be static
– Chunks are distributed in round-robin fashion in chunks of size chunk_size
– If no chunk size specified, chunks are of (almost) equal size; each team receives at least one chunk

191

Accelerated workshare v2.0

• teams construct
• distribute construct

• Transfer execution control to MULTIPLE device initial threads
• Workshare loop iterations across the initial threads.

host thread
device initial

threads

teams

#pragma omp target
#pragma omp teams
#pragma omp distribute
for (i=0;i<N;i++)

…

192

Accelerate workshare v3.0
• teams distribute
• parallel for simd

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

#pragma omp target
#pragma omp teams distribute
for (i=0;i<N;i++)
#pragma omp parallel for simd
for (j=0;j<M;i++)

…

*the term “master” has been deprecated in OpenMP 5.1 and replaced with the term “primary”. 193

Our host/device Platform Model and OpenMP

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Target
construct to
get onto a

device

Teams construct to create a
league of teams with one team of

threads on each compute unit.

Distribute construct to assign
blocks of loop iterations to teams.

Parallel for simd
to run each block
of loop iterations

on the processing
elements

194

Our host/device Platform Model and OpenMP

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Target
construct to
get onto a

device

Teams construct to create a
league of teams with one team of

threads on each compute unit.

Distribute construct to assign
blocks of loop iterations to teams.

Parallel for simd
to run each block
of loop iterations

on the processing
elements

Typical usage ... let the compiler do what’s best for the device:

#pragma omp target
to get on the device

#pragma omp teams distribute parallel for simd
to assign work to the device processing elements

195

Our running example: Jacobi solver

• An iterative method to solve a system of linear equations
– Given a matrix A and a vector b find the vector x such that Ax=b

• The basic algorithm:
– Write A as a lower triangular (L), upper triangular (U) and diagonal matrix

Ax = (L+D+U)x = b
– Carry out multiplications and rearrange

Dx=b-(L+U)x à x = (b-(L+U)x)/D
– Iteratively compute a new x using the x from the previous iteration

Xnew = (b-(L+U)xold)/D

• Advantage: we can easily test if the answer is correct by multiplying our
final x by A and comparing to b

• Disadvantage: It takes many iterations and only works for diagonally
dominant matrices

196

Jacobi Solver

<<< allocate and initialize the matrix A >>>
<<< and vectors x1, x2 and b >>>

while((conv > TOL) && (iters<MAX_ITERS))
{
iters++;

for (i=0; i<Ndim; i++){
xnew[i] = (TYPE) 0.0;
for (j=0; j<Ndim;j++){

if(i!=j)
xnew[i]+= A[i*Ndim + j]*xold[j];

}
xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}

// test convergence
conv = 0.0;
for (i=0; i<Ndim; i++){

tmp = xnew[i]-xold[i];
conv += tmp*tmp;

}
conv = sqrt((double)conv);

// swap pointers for next
// iteration
TYPE* tmp = xold;
xold = xnew;
xnew = tmp;

} // end while loop

Iteratively update xnew until the value stabilizes (i.e. change less than a preset TOL)

197

Jacobi Solver (Par Targ, 1/2)
while((conv > TOL) && (iters<MAX_ITERS))
{
iters++;

#pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
map(to:A[0:Ndim*Ndim], b[0:Ndim])

#pragma omp teams distribute parallel for simd private(i,j)
for (i=0; i<Ndim; i++){

xnew[i] = (TYPE) 0.0;
for (j=0; j<Ndim;j++){

if(i!=j)
xnew[i]+= A[i*Ndim + j]*xold[j];

}
xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}

198

Jacobi Solver (Par Targ, 2/2)
//
// test convergence
//
conv = 0.0;

#pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \
map(tofrom:conv)

#pragma omp teams distribute parallel for simd \
private(i,tmp) reduction(+:conv)

for (i=0; i<Ndim; i++){
tmp = xnew[i]-xold[i];
conv += tmp*tmp;

}
conv = sqrt((double)conv);

TYPE* tmp = xold;
xold = xnew;
xnew = tmp;

} // end while loop

This worked but the performance was
awful. Why?

System Implementation Ndim = 4096
NVIDA®
K20X™
GPU

Target dir per
loop

131.94 secs

Cray® XC40™ Supercomputer running Cray® Compiling Environment 8.5.3.
Intel® Xeon ® CPU E5-2697 v2 @ 2.70GHz with 32 GB DDR3. NVIDIA® Tesla® K20X, 6GB.

199

Data movement dominates!!!
while((conv > TOLERANCE) && (iters<MAX_ITERS))

{ iters++;
xnew = iters % s ? x2 : x1;
xold = iters % s ? x1 : x2;

#pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
map(to:A[0:Ndim*Ndim], b[0:Ndim])

#pragma omp teams distribute parallel for simd private(i,j)
for (i=0; i<Ndim; i++){

xnew[i] = (TYPE) 0.0;
for (j=0; j<Ndim;j++){

if(i!=j)
xnew[i]+= A[i*Ndim + j]*xold[j];

}
xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}
// test convergence

conv = 0.0;
#pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \

map(tofrom:conv)
#pragma omp teams distribute parallel for private(i,tmp) reduction(+:conv)
for (i=0; i<Ndim; i++){

tmp = xnew[i]-xold[i];
conv += tmp*tmp;

}
conv = sqrt((double)conv);

}

Typically over 4000 iterations!

For each iteration, copy to device
(3*Ndim+Ndim2)*sizeof(TYPE) bytes

For each iteration, copy from device
2*Ndim*sizeof(TYPE) bytes

For each iteration, copy to
device
2*Ndim*sizeof(TYPE) bytes

200

Target data directive
• The target data construct creates a target data region

… use map clauses for explicit data management

one or more target
regions work within the

target data region

#pragma omp target data map(to:A, B) map(from: C)
{

#pragma omp target
{do lots of stuff with A, B and C}

{do something on the host}

#pragma omp target
{do lots of stuff with A, B, and C}

}

Data is mapped onto the
device at the beginning of

the construct

Data is mapped back to
the host at the end of the

target data region

201

Jacobi Solver (Par Target Data, 1/2)
#pragma omp target data map(tofrom:x1[0:Ndim],x2[0:Ndim]) \

map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
while((conv > TOL) && (iters<MAX_ITERS))

{ iters++;

#pragma omp target
#pragma omp teams distribute parallel for simd private(j) firstprivate(xnew,xold)

for (i=0; i<Ndim; i++){
xnew[i] = (TYPE) 0.0;
for (j=0; j<Ndim;j++){

if(i!=j)
xnew[i]+= A[i*Ndim + j]*xold[j];

}
xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}

202

Jacobi Solver (Par Target Data, 2/2)
// test convergence
conv = 0.0;
#pragma omp target map(tofrom: conv)
#pragma omp teams distribute parallel for simd \

private(tmp) firstprivate(xnew,xold) reduction(+:conv)
for (i=0; i<Ndim; i++){

tmp = xnew[i]-xold[i];
conv += tmp*tmp;

}
// end target region
conv = sqrt((double)conv);

TYPE* tmp = xold;
xold = xnew;
xnew = tmp;

} // end while loop

System Implementation Ndim = 4096
NVIDA®
K20X™
GPU

Target dir per loop 131.94 secs
Above plus target
data region

18.37 secs

Third party names are the property of their owners. 203

Single Instruction Multiple Data

• Individual work-items of a warp start together at the same program
address

• Each work-item has its own instruction address counter and register
state
– Each work-item is free to branch and execute independently
– Supports the SPMD pattern.

• Branch behavior
– Each branch will be executed serially
– Work-items not following the current branch will be disabled

204

A warp

Start Branch1 Branch2 Branch3 Converge

Time

Branching

Conditional execution
// Only evaluate expression
// if condition is met
if (a > b)
{
acc += (a - b*c);

}

Selection and masking
// Always evaluate expression
// and mask result
temp = (a - b*c);
mask = (a > b ? 1.f : 0.f);
acc += (mask * temp);

205

Coalescence
• Coalesce - to combine into one
• Coalesced memory accesses are

key for high bandwidth
• Simply, it means, if thread i

accesses memory location n then
thread i+1 accesses memory
location n+1

• In practice, it’s not quite as strict…

for (int id = 0; id < size; id++)
{
// ideal

float val1 = memA[id];

// still pretty good
const int c = 3;
float val2 = memA[id + c];

// stride size is not so good
float val3 = memA[c*id];

// terrible
const int loc =
some_strange_func(id);

float val4 = memA[loc];
}

206

Jacobi Solver (Target Data/branchless/coalesced mem, 1/2)
#pragma omp target data map(tofrom:x1[0:Ndim],x2[0:Ndim]) \

map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
while((conv > TOL) && (iters<MAX_ITERS))

{ iters++;
#pragma omp target

#pragma omp teams distribute parallel for simd private(j)
for (i=0; i<Ndim; i++){

xnew[i] = (TYPE) 0.0;
for (j=0; j<Ndim;j++){

xnew[i]+= (A[j*Ndim + i]*xold[j])*((TYPE)(i != j));
}
xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];

}

We replaced the original code with a
poor memory access pattern

xnew[i]+= (A[i*Ndim + j]*xold[j])
With the more efficient

xnew[i]+= (A[j*Ndim + i]*xold[j])
207

//
// test convergence
conv = 0.0;

#pragma omp target map(tofrom: conv)
#pragma omp teams distribute parallel for simd \

private(tmp) reduction(+:conv)
for (i=0; i<Ndim; i++){

tmp = xnew[i]-xold[i];
conv += tmp*tmp;

}
conv = sqrt((double)conv);

TYPE* tmp = xold;
xold = xnew;
xnew = tmp;

} // end while loop

System Implementation Ndim = 4096
NVIDA®
K20X™
GPU

Target dir per
loop

131.94 secs

Above plus
target data
region

18.37 secs

Above plus
reduced
branching

13.74 secs

Above plus
improved mem
access

7.64 secs

Jacobi Solver (Target Data/branchless/coalesced mem, 2/2)

Cray® XC40™ Supercomputer running Cray® Compiling Environment 8.5.3.
Intel® Xeon ® CPU E5-2697 v2 @ 2.70GHz with 32 GB DDR3. NVIDIA® Tesla® K20X, 6GB. Third party names are the property of their owners. 208

