
11

The Parallel Programming
world beyond OpenMP

Tim Mattson
Intel Corp.

timothy.g.mattson@ intel.com

2

Legal Disclaimer & Optimization Notice

• INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

• Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core, VTune, and Cilk are trademarks of
Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors
for optimizations that are not unique to Intel microprocessors. These optimizations include
SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee
the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

33

Disclaimer
• The views expressed in this talk are those of the speaker and not his

employer.

• If I say something “smart” or worthwhile:
– Credit goes to the many smart people I work with.

• If I say something stupid…
– It’s my own fault

I work in Intel’s research labs. I don’t build products. Instead,
I get to poke into dark corners and think silly thoughts… just to

make sure we don’t miss any great ideas.

Hence, my views are by design far “off the roadmap”.

4

The Big “Three”

• In HPC, “three” programming environments dominate … covering the major classes of
hardware.

1. OpenMP: Shared memory systems … more recently, GPUs too.

2. MPI: distributed memory systems … though it works nicely on shared memory
computers.

3. CUDA, OpenACC, OpenCL, OpenMP/Target, Sycl: GPU programming

(use CUDA or OpenACC if you don’t mind locking yourself to a single vendor)

• Even if you don’t plan to spend much time programming with these systems … a well rounded
HPC programmer should know what they are and how they work.

5

The Big “Three”

• In HPC, “three” programming environments dominate … covering the major classes of
hardware.

1. OpenMP: Shared memory systems … more recently, GPUs too.

2. MPI: distributed memory systems … though it works nicely on shared memory
computers.

3. CUDA, OpenACC, OpenCL, OpenMP/Target, Sycl: GPU programming

(use CUDA or OpenACC if you don’t mind locking yourself to a single vendor)

• Even if you don’t plan to spend much time programming with these systems … a well rounded
HPC programmer should know what they are and how they work.

These all are
expressions of

the same
execution model

… so I lump them
together.

6

The Big “Three”

• In HPC, “three” programming environments dominate … covering the major classes of
hardware.

1. OpenMP: Shared memory systems … more recently, GPUs too.

2. MPI: distributed memory systems … though it works nicely on shared memory
computers.

3. CUDA, OpenACC, OpenCL, OpenMP/Target, Sycl: GPU programming

(use CUDA or OpenACC if you don’t mind locking yourself to a single vendor)

• Even if you don’t plan to spend much time programming with these systems … a well rounded
HPC programmer should know what they are and how they work.

You are all
OpenMP

experts and
know all about
multithreading

7

Parallel API’s: MPI
the Message Passing Interface

omp_set_lock(lck)MPI_Bsend_init

MPI_Pack

MPI_Sendrecv_replace

MPI_Recv_init

MPI_Allgatherv

MPI_Unpac
k

MPI_Sendrecv

MPI_Bcast

MPI_Ssend

C$OMP ORDERED MPI_Startall

MPI_Test_cancelle
d

MPI_Type_free

MPI_Type_contiguous

MPI_Barrie
r

MPI_Start

MPI_COMM_WORLD

MPI_Recv

MPI_Send

MPI_Waitall

MPI_Reduce

MPI_Alltoall
v

MPI_Group_compare

MPI_Scan
MPI_Group_size

MPI_Errhandler_creat
e

MPI: An API for Writing Clustered
Applications

–A library of routines to coordinate the
execution of multiple processes.

–Provides point to point and collective
communication in Fortran, C and C++

–Unifies last 25 years of cluster
computing and MPP practice

8

Execution Model: Distributed memory, CSP*
• Program consists of a collection of named processes.
– Number of processes almost always fixed at program startup time
– Local address space per node -- NO physically shared memory.

• Processes communicate by explicit send/receive pairs
– Coordination is implicit in every communication event.
–MPI (Message Passing Interface) is the most commonly used API

Network

Process P0

Code & Static Data

Memory

Resources

…

S: 12

t: 4200
phi: “foo”

…

Process P1

Code & Static Data

Memory

Resources

…

S: 0x: 42

foo: “bar”

Process Pn

Code & Static Data

Memory

Resources

…

S: 11 y: 23

zz: “tops”
send (P1,s)receive (Pn,s)

S: 11

*CSP: communicating sequential processes

9

How do people use MPI?
The SPMD Design Pattern

Replicate the program.

Add glue code

Break up the data

A sequential program
working on a data set

•A single program working on a
decomposed data set.

•Use process ID and numb of processes
to split up work between processes

• Coordination by passing messages.

10

How do people use MPI?
The SPMD Design Pattern

Replicate the program.

Add glue code

Break up the data

A sequential program
working on a data set

•A single program working on a
decomposed data set.

•Use process ID and numb of processes
to split up work between processes

• Coordination by passing messages.

The collection of
processes involved in
a computation is called
“a process group”

MPI functions work within a “context”: MPI actions occurring in different
contexts, even if they share a process group, cannot interfere with each other.

11

MPI Hello World

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf("Hello from process %d of %d\n",

rank, size);
MPI_Finalize();
return 0;

}

12

Initializing and finalizing MPI

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf("Hello from process %d of %d\n",

rank, size);
MPI_Finalize();
return 0;

}

int MPI_Init (int* argc, char* argv[])
§ Initializes the MPI library … called before any

other MPI functions.
§ agrc and argv are the command line args passed

from main()

int MPI_Finalize (void)
§ Frees memory allocated by the MPI library … close

every MPI program with a call to MPI_Finalize

13

How many processes are involved?

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf("Hello from process %d of %d\n",

rank, size);
MPI_Finalize();
return 0;

}

int MPI_Comm_size (MPI_Comm comm, int* size)
§ MPI_Comm, an opaque data type called a communicator. Default

context: MPI_COMM_WORLD (all processes)
§ MPI_Comm_size returns the number of processes in the process

group associated with the communicator

Communicators consist of
two parts, a context and a
process group.

The communicator lets one
control how groups of
messages interact.

Communicators support
modular SW … i.e. I can
give a library module its
own communicator and
know that it’s messages
can’t collide with messages
originating from outside the
module

14

Which process “am I” (the rank)

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf("Hello from process %d of %d\n",

rank, size);
MPI_Finalize();
return 0;

}

int MPI_Comm_rank (MPI_Comm comm, int* rank)
§ MPI_Comm, an opaque data type, a communicator. Default context:

MPI_COMM_WORLD (all processes)
§ MPI_Comm_rank An integer ranging from 0 to “(num of procs)-1”

Note that other than init()
and finalize(), every MPI
function has a
communicator.

This makes sense .. You
need a context and group
of processes that the MPI
functions impact … and
those come from the
communicator.

15

Running the program

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf("Hello from process %d of %d\n",

rank, size);
MPI_Finalize();
return 0;

}

§ On a 4 node cluster, I’d run this
program (hello) as:
> mpiexec –np 4 –hostfile hostf hello

• Where “hostf” is a file with the names of
the cluster nodes, one to a line.

• What would this program would output?

16

Running the program

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){

int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf("Hello from process %d of %d\n",

rank, size);
MPI_Finalize();
return 0;

}

§ On a 4 node cluster, I’d run this
program (hello) as:
> mpiexec –np 4 –hostfile hostf hello
Hello from process 1 of 4
Hello from process 2 of 4
Hello from process 0 of 4
Hello from process 3 of 4

• Where “hostf” is a file with the names
of the cluster nodes, one to a line.

17

Bulk Synchronous Programming (BSP):
A common design pattern used with MPI Programs

• Many MPI applications have few (if any) sends and
receives. They use the following very common pattern:

§ Use the Single Program Multiple Data
pattern

§ Each process maintains a local view of the
global data

§ A problem broken down into phases each of
which is composed of two subphases:

• Compute on local view of data
• Communicate to update global view on

all processes (collective
communication).

§ Continue phases until complete

Collective comm.

Collective comm.

P
0

P
3

P
2

P
1Processes

Tim
e

BSP is a subset of the SPMD pattern.

Example Problem: Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx » p
i = 0

N

Mathematically, we know that:

We can approximate the
integral as a sum of
rectangles:

Where each rectangle has
width Dx and height F(xi) at
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.
0

2.
0

1.
0X0.

0

19

PI Program: an example

static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
x = 0.5 * step;

for (i=0;i<= num_steps; i++){
x+=step;
sum += 4.0/(1.0+x*x);

}
pi = step * sum;

}

20

Pi program in MPI … using the BSP pattern
#include <mpi.h>
void main (int argc, char *argv[])
{

int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;
step = 1.0/(double) num_steps ;
MPI_Init(&argc, &argv) ;
MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
my_steps = num_steps/numprocs ;

int istart = my_id*my_steps;
int iend = (my_id+1)*my_steps;
if (my_id = numprocs-1) iend = num_steps;

for (i=istarts; i<iend; i++){
x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
sum *= step ;
MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD) ;

MPI_finalize();
}

Sum values in “sum” from
each process and place it

in “pi” on process 0

21

Reduction
int MPI_Reduce (void* sendbuf,

void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op,
int root, MPI_Comm comm)

• MPI_Reduce performs specified reduction operation on specified data
from all processes in communicator, places result in process “root” only.

• MPI_Allreduce places result in all processes (avoid unless necessary)

Operation Function
MPI_SUM Summation
MPI_PROD Product
MPI_MIN Minimum value
MPI_MINLOC Minimum value and

location
MPI_MAX Maximum value
MPI_MAXLOC Maximum value and

location
MPI_LAND Logical AND

Operation Function
MPI_BAND Bitwise AND
MPI_LOR Logical OR
MPI_BOR Bitwise OR
MPI_LXOR Logical exclusive OR
MPI_BXOR Bitwise exclusive OR
User-defined It is possible to define new

reduction operations

22

Sending and receiving messages
• Pass a buffer which holds “count” values of MPI_TYPE
• The data in a message to send or receive is described by a triple:

– (address, count, datatype)

Address of
Local
Buffer

count Datatype

MPI_Send (buff, 100, MPI_DOUBLE, Dest, tag, MPI_COMM_WORLD);

• The receiving process identifies messages with the double :
- (source, tag)

• Where:
- Source is the rank of the sending process
- Tag is a user-defined integer to help the receiver keep track of

different messages from a single source

Rank of Source node

tag

MPI_Recv (buff, 100, MPI_DOUBLE, Src, tag, MPI_COMM_WORLD, &status);

23

Buffers
• Message passing has a small set of primitives, but there are subtleties
– Buffering and deadlock
– Deterministic execution
– Performance

• When you send data, where does it go? One possibility is:
Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

Derived from: Bill Gropp, UIUC

24

Blocking Send-Receive Timing Diagram
(MPI functions return when local buffer can be used again)

send side receive side

MPI_Send: T1

T4: MPI_Recv returns

MPI_Send returns T2

Once receive
is called @ T0,
Local buffer unavailable
to user

Local buffer filled and
available to user

It is important to post the receive before
sending, for highest performance.

T0: MPI_Recv

Local
buffer can
be reused

T3: Transfer Complete

tim
e

tim
e

25

buffer unavailable
to user

Non-Blocking Send-Receive Diagram
(MPI functions return immediately)

send side receive side

MPI_Isend

T8: MPI_Wait returns

T3 buffer unavailable
to user

receive buffer
filled and available

to the user

T0: MPI_Irecv

T7: transfer finishes

T4: MPI_Wait called

Sender completes

T1: MPI_Irecv Returns

T5

tim
e

tim
e

T2
MPI_Isend returns

T6
T9

MPI_Wait

MPI_Wait returns

buffer available
to user

26

Example: finite difference methods

• Solve the heat diffusion equation in 1 D:
– u(x,t) describes the temperature field
– We set the heat diffusion constant to one
– Boundary conditions, constant u at endpoints.

ihxxi += 0

t
u

x
u

¶
¶

=
¶
¶

2

2

n map onto a mesh with stepsize h and k

n Central difference approximation for
spatial derivative (at fixed time) 2

11
2

2 2
h

uuu
x
u jjj -+ +-

=
¶
¶

iktti += 0

n Time derivative at t = tn+1
k
uu

dt
du nn -

=
+1

27

Example: Explicit finite differences
• Combining time derivative expression using spatial derivative

at t = tn
2

11
1 2

h
uuu

k
uu n

j
n
j

n
j

n
j

n
j -+
+ +-

=
-

n Solve for u at time n+1 and step j

n The solution at t = tn+1 is determined explicitly from the solution at t = tn
(assume u[t][0] = u[t][N] = Constant for all t).

n
j

n
j

n
j

n
j ruruuru 11
1)21(+-
+ ++-=

2h
kr =

for (int t = 0; t < N_STEPS-1; ++t)
for (int x = 1; x < N-1; ++x)

u[t+1][x] = u[t][x] + r*(u[t][x+1] - 2*u[t][x] + u[t][x-1]);

n Explicit methods are easy to compute … each point updated based on
nearest neighbors. Converges for r<1/2.

28

Heat Diffusion equation

infinitesimally narrow rod (~one D)

“infinite” heat
bath (fixed

temperature,
T2)

“infinite” heat
bath (fixed

temperature,
T1)

T2T1

28

29

Heat Diffusion equation

infinitesimally narrow rod (~one D)

T2T1

Pictorially, you are sliding a three point
“stencil” across the domain (u) and
updating the center point at each stop.

29

30

Heat Diffusion equation

int main()
{

double *u = malloc (sizeof(double) * (N));
double *up1 = malloc (sizeof(double) * (N));

initialize_data(uk, ukp1, N, P); // init to zero, set end temperatures
for (int t = 0; t < N_STEPS; ++t){

for (int x = 1; x < N-1; ++x)
up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

temp = up1; up1 = u; u = temp;
}

return 0;

T2T1

A well known trick with 2 arrays so I
don’t overwrite values from step k-1
as I fill in for step k

Note: I don’t need the
intermediate “u[t]” values

hence “u” is just indexed by x.

31

Heat Diffusion equation

int main()
{

double *u = malloc (sizeof(double) * (N));
double *up1 = malloc (sizeof(double) * (N));

initialize_data(uk, ukp1, N, P); // init to zero, set end temperatures
for (int t = 0; t < N_STEPS; ++t){

for (int x = 1; x < N-1; ++x)
up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

temp = up1; up1 = u; u = temp;
}

return 0;

T2T1

How would
you
parallelize
this program?

32

Heat Diffusion equation

T2T1

• Start with our original picture of the problem … a one
dimensional domain with end points set at a fixed
temperature.

33

Heat Diffusion equation

T2T1

• Break it into chunks assigning one chunk to each process.

P0 P1 P2 P3

34

Heat Diffusion equation

T2T1

• Each process works on it’s own chunk … sliding the stencil
across the domain to updates its own data.

P0 P1 P2 P3

35

Heat Diffusion equation

T2T1

• What about the ends of each chunk … where the stencil will
run off the end and hence have missing values for the
computation?

36

Heat Diffusion equation

T2T1

• We add ghost cells to the ends of each chunk, update them
with the required values from neighbor chunks at each time
step … hence giving the stencil everything it needs on any
given chunk to update all of its values.

Ghost
cell

Ghost
cell

37

Design Pattern: Geometric Decomposition

• Use when:
– The problem is organized around a central data structure that can be decomposed into

smaller segments (chunks) that can be updated concurrently.
• Solution

– Typically, the data structure is updated iteratively where a new value for one chunk depends
on neighboring chunks.

– The computation breaks down into three components: (1) exchange boundary data, (2)
update the interiors or each chunk, and (3) update boundary regions. The optimal size of the
chunks is dictated by the properties of the memory hierarchy.

• Note:
– This pattern is often used with the Structured Mesh and linear algebra computational

strategy pattern.

38

The Geometric Decomposition Pattern

T2T1

Ghost
cell

Ghost
cell

§ This is an instance of a very important design pattern … the Geometric
decomposition pattern.

39

Heat Diffusion MPI Example
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &P);
MPI_Comm_rank (MPI_COMM_WORLD, &myID);
double *u = malloc (sizeof(double) * (2 + N/P)) // include "Ghost Cells"
double *up1 = malloc (sizeof(double) * (2 + N/P)); // to hold values

// from my neighbors
initialize_data(uk, ukp1, N, P);
for (int t = 0; t < N_STEPS; ++t){

if (myID != 0) MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD);
if (myID != P-1) MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status);
if (myID != P-1) MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD);
if (myID != 0) MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status);

for (int x = 2; x <= N/P; ++x)
up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

if (myID != 0)
up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]);

if (myID != P-1)
up1[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);

temp = up1; up1 = u; u = temp;

} // End of for (int t ...) loop

MPI_Finalize();
return 0;

We write/explain
this part first and
then address the
communication
and data
structures

40

Heat Diffusion MPI Example
/* continued from previous slide */

for (int x = 2; x <= N/P; ++x)
up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

if (myID != 0)
up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]);

if (myID != P-1)
up1[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);

temp = up1; up1 = u; u = temp;

} // End of for (int t ...) loop

MPI_Finalize();
return 0;

Note I was lazy and assume N was evenly
divided by P. Clearly, I’d never do this in a
“real” program.

Temperature fields using local data and
values from ghost cells.

u[0] and
u[N/P+1] are the

ghost cells

We don’t update up1[1] on node 0 or up1[N/P] on node (P-1) since the boundary conditions
stipulate that the end points have a fixed temperature

41

Heat Diffusion MPI Example
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &P);
MPI_Comm_rank (MPI_COMM_WORLD, &myID);
double *u = malloc (sizeof(double) * (2 + N/P)) // include "Ghost Cells"
double *up1 = malloc (sizeof(double) * (2 + N/P)); // to hold values

// from my neighbors
initialize_data(uk, ukp1, N, P);
for (int t = 0; t < N_STEPS; ++t){

if (myID != 0)
MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD);

if (myID != P-1)
MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status);

if (myID != P-1)
MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD);

if (myID != 0)
MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status);

/* continued on next slide */

1D PDE solver … the simplest “real” message
passing code I can think of. Note: edges of
domain are held at a fixed temperature

Send my “right” boundary value to my “right’ neighbor

Receive my “left” ghost cell from my “left’ neighbor

Send my “left” boundary value to my “left’ neighbor

Receive my “right” ghost cell from my “right’ neighbor

42

MPI is huge!!!
• MPI has over 430 functions!!!

– Many forms of message passing
– Full range of collectives (such as reduction)
– dynamic process management
– Shared memory
– and much more

• Most programs, however use around a dozen different
constructs … so it’s not as hard to learn as it may seem.

• MPI_Init
• MPI_Finish
• MPI_Comm_size
• MPI_Comm_rank
• MPI_Wtime

• MPI_Reduce
• MPI_Bcast

• MPI_Send
• MPI_Recv
• MPI_Isend
• MPI_Irecv
• MPI_Wait

Management/tim
e

Message Passing Collective Comm.

43

Does a shared address space make
programming easier?

Time

Effort

Extra work upfront, but easier
optimization and debugging means

overall, less time to solution
Message passing

Time

Effort

initial parallelization can be
quite easy

Multi-threading

But difficult debugging and
optimization means overall

project takes longer

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica, vol. 35 pp. 321–345,
2003

Proving that a shared address space program using
semaphores is race free is an NP-complete problem*

44

The Big “Three”

• In HPC, “three” programming environments dominate … covering the major classes of
hardware.

1. OpenMP: Shared memory systems … more recently, GPUs too.

2. MPI: distributed memory systems … though it works nicely on shared memory
computers.

3. CUDA, OpenACC, OpenCL, OpenMP/Target, Sycl: GPU programming

(use CUDA or OpenACC if you don’t mind locking yourself to a single vendor)

• Even if you don’t plan to spend much time programming with these systems … a well rounded
HPC programmer should know what they are and how they work.

You are all
OpenMP

experts and
know all about
multithreading You aren’t an

expert, but
you now
hopefully
grok* MPI

*grok: a Martian word meaning to understand something deeply; to merge with it and for it to merge with you.

45

Single Instruction Multiple Thread (SIMT)

• SIMT:
– Implement data parallel problems:

–Define an abstract index space that spans the problem domain.
–Data structures in the problem are aligned to this index space.
–Run an instance of a kernel at each point in that space.

• This approach was popularized for graphics applications where the index space
mapped onto the pixels in an image. Since 2006, It’s been extended to General
Purpose GPU (GPGPU) programming.

Note: This is closely related the SPMD pattern.

4646

The BIG idea behind SIMT
•Execution model … execute an instance of a kernel at each point in a
problem domain.
–E.g., process a 1024 x 1024 image with one instance of a kernel per
pixel or 1024 x 1024 = 1,048,576 kernel instances

void
trad_mul(int n,

const float *a,
const float *b,
float *c)

{
int i;
for (i=0; i<n; i++)
c[i] = a[i] + b[i];

}

Traditional loops
kernel void
dp_mul(global const float *a,

global const float *b,
global float *c)

{
int id = get_global_id(0);

c[id] = a[id] + b[id];

} // execute over “n” work-items

Data Parallel … OpenCL

Third party names are the property of their owners

47

An N-dimensional range of work-items

1024

10
24

Synchronization between
work-items possible only

within work-groups:
barriers and memory fences

Cannot synchronize
between work-groups

within a kernel

Third party names are the property of their owners

• SIMT execution model … execute an instance of a kernel at each point in a problem domain.
–E.g., process a 1024 x 1024 image with one instance of a kernel per pixel or

1024 x 1024 = 1,048,576 kernel instances
– Global Dimensions: (NDRange) 1024x1024 (whole problem space)
– Local Dimensions: 128x128 (work-group, executes together)

48

An N-dimensional grid of threads

1024

10
24

Synchronization between
threads possible only within

thread-groups:
barriers and memory fences

Cannot synchronize
between thread-groups

within a kernel*

Third party names are the property of their owners *CUDA since 9.X has relaxed this constraint

• SIMT execution model … execute an instance of a kernel at each point in a problem domain.
–E.g., process a 1024 x 1024 image with one instance of a kernel per pixel or

1024 x 1024 = 1,048,576 kernel instances
– Global Dimensions: (Grid) 1024x1024 (whole problem space)
– Local Dimensions: 128x128 (thread-group, executes together)

49

SIMT: Single Instruction, Multiple Thread

• SIMT model: Individual scalar instruction streams are grouped together for SIMD
execution on hardware

SL0 SL1 SL2 SL3 SL4 SL5 SL6 SL7

ld x
mul a
ld y
add
st y

A stream of
Scalar
instructions

NVIDIA calls this set of
work-items a warp

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y
SIMD execution

scheduled across a
fixed number of SIMD

Lanes (SL)

50

Single Instruction Multiple Data

• Individual work-items of a warp start together at the same program address
• Each work-item has its own instruction address counter and register state

– Each work-item is free to branch and execute independently
– Supports the SPMD pattern.

• Branch behavior
– Each branch will be executed serially
– Work-items not following the current branch will be disabled

A warp

Start Branch1 Branch2 Branch3 Converge

Time

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

GP
U

M
em

or
y

L2 Cache

L2 Cache L2 Cache

GP
U

M
em

or
y

GP
U

M
em

or
y

GP
U

M
em

or
y

GPU Architecture:

Frigure from “Programming your GPU with OpenMP”, but Tom Deakin and Tim Mattson, MIT Press, 2022

A generic GPU with 16
Streaming Multiprocessors
each with with 16 SIMD
Lanes

A modern GPU also has load-store,
floating point, and tensor processing
units spread around the SM. They
are accessed through a fixed API and
are not directly programmed through
a GPGPU programing model …
hence we do not include them here.

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

GP
U

M
em

or
y

L2 Cache

L2 Cache L2 Cache

GP
U

M
em

or
y

GP
U

M
em

or
y

GP
U

M
em

or
y

GPU Architecture: Nvidia Nomenclature

Frigure from “Programming your GPU with OpenMP”, but Tom Deakin and Tim Mattson, MIT Press, 2022

• Thread Groups:
– Each Thread Group is scheduled

onto a Streaming SIMD processor
– Peak efficiency requires multiple

work groups per Streaming SIMD
processor

• Warps:
– A thread group is broken down into

warps that execute together.
– A SIMD instruction acts on a “warp”
– The NVIDIA Warp width is 32

elements: LOGICAL SIMD width
(though the device on this page has
a SIMD width of 16)

• CUDA threads:
– each thread is a SIMD vector lane

and runs on the processing element
within a Streaming SIMD processor

GPU terminology is really messed up
1

1

#

Table from “Programming your GPU with OpenMP”, but Tom Deakin and Tim Mattson, MIT Press, 2022

54

SIMT Programming models
• CUDA:

– Released ~2006. Made GPGPU programming “mainstream” and continues to drive innovation in SIMT programming.
– Downside: proprietary to NVIDIA

• OpenCL:
– Open Standard for SIMIT programming created by Apple, Intel, NVIDIA, AMD, and others. 1st release in 2009.
– Supports CPUs, GPUs, FPGAs, and DSP chips. The leading cross platform SIMT model.
– Downside: extreme portability means verbose API. Painfully low level especially for the host-program.

• Sycl:
– C++ abstraction layer implements SIMT model with kernels as lambdas. Closely aligned with OpenCL. 1st release 2014
– Downside: Cross platform implementations only emerging recently.

• Directive driven programming models:
– OpenACC: they split from an OpenMP working group to create a competing directive driven API emphasizing descriptive

(rather than prescriptive) semantics.
– Downside: NOT an Open Standard. Controlled by NVIDIA.

– OpenMP: Mixes multithreading and SIMT. Semantics are prescriptive which makes it more verbose. A truly Open
standard supported by all the key GPU players.
– Downside: Poor compiler support so far … but that will change over the next couple years.

Third party names are the property of their owners

Vector addition with CUDA

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < N) c[i] = a[i] + b[i];

}

int main () {
int N = ... ;
float *a, *b, *c;
cudaMalloc (&a, sizeof(float) * N);

// ... allocate other arrays (b and c), fill with data

// Use thread blocks with 256 threads each
vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);

}

55

Unified shared
memory … allocate
on host, visible on

device too

CUDA kernel as
function

Enqueue the kernel
to execute on the

Grid

Vector addition with SYCL

// Compute sum of length-N vectors: C = A + B
#include <CL/sycl.hpp>
constexpr int N = 8;
int main () {

int N = ... ;
float *a, *b, *c;
sycl::queue q;
*a = (float *)sycl::malloc_shared(N * sizeof(float), q);

// ... allocate other arrays (b and c), fill with data

q.parallel_for(sycl::range<1>{N},
[=](sycl::id<1> i) {
c[i] = a[i] + b[i];

});
q.wait();

}
56

Create a queue
for SYCL

commands

Unified shared
memory … allocate
on host, visible on

device too

Kernel as a C++
Lambda function

[=] means capture external
variables by value.

5757

Vector addition with OpenACC
•Let’s add two vectors together …. C = A + B

void vadd(int n,
const float *a,
const float *b,
float *restrict c)

{
int i;

#pragma acc parallel loop
for (i=0; i<n; i++)

c[i] = a[i] + b[i];
}
int main(){
float *a, *b, *c; int n = 10000;
// allocate and fill a and b

vadd(n, a, b, c);

}

Assure the
compiler that c
is not aliased

with other
pointers
Turn the loop
into a kernel,

move data to a
device, and
launch the

kernel.

Host waits here
until the kernel
is done. Then

the output array
c is copied

back to the host.

58

A more complicated example:
Jacobi iteration: OpenACC (GPU)
#pragma acc data copy(A), create(Anew)
while (err>tol && iter < iter_max){

err = 0.0;
#pragma acc parallel loop reduction(max:err)
for(int j=1; j< n-1; j++){

for(int i=1; i<M-1; i++){
Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+

A[j-1][i] + A[j+1][i]);
err = max(err,abs(Anew[j][i] – A[j][i]));

}
}
#pragma acc parallel loop
for(int j=1; j< n-1; j++){
for(int i=1; i<M-1; i++){

A[j][i] = Anew[j]i];
}

}
iter ++;

}

Create a data region on
the GPU. Copy A once

onto the GPU, and
create Anew on the

device (no copy from
host)

Copy A back out to host
… but only once

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012

59

A more complicated example:
Jacobi iteration: OpenMP target directives
#pragma omp target data map(A) map(alloc:Anew)
while (err>tol && iter < iter_max){

err = 0.0;
#pragma target
#pragma omp teams distribute parallel for reduction(max:err)
for(int j=1; j< n-1; j++){

for(int i=1; i<M-1; i++){
Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+

A[j-1][i] + A[j+1][i]);
err = max(err,abs(Anew[j][i] – A[j][i]));

}
}
#pragma omp target
#pragma omp teams distribute parallel for
for(int j=1; j< n-1; j++){
for(int i=1; i<M-1; i++){

A[j][i] = Anew[j]i];
}

}
iter ++;

}

Create a data
region on the
GPU. Map A
and Anew onto

the target device

Copy A back out to host
… but only once

60

Executing a program on CPUs and GPUs

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines

work

For a CPU

For a GPU

Work decomposed
into blocks

Work
decomposed

into work-items

Organized into
work-groups

61

Executing a program on CPUs and GPUs

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines

work

For a CPU

For a GPU

Work decomposed
into blocks

Work
decomposed

into work-items

Organized into
work-groups

Enqueued for
execution

Mapped onto
threads for
execution

One work-group per
compute-unit executing

CPU/GPU execution and the idea of forward progress

For a CPU, the
threads are all
active and able

to make
forward

progress.

For a GPU, any
given work-

group might be
in the queue

waiting to
execute.

63

Backup Content
(or what I’d cover if we had a couple more hours)

• Developing a complex kernel in OpenCL; the dream of performance portability

• The history of General Purpose GPU programming (GPGPU)

• Debunking the 100X GPU vs. CPU Myth

64

Industry Standards for Programming Heterogeneous
Platforms

OpenCL – Open Computing Language
Open, royalty-free standard for portable, parallel programming of

heterogeneous parallel computing CPUs, GPUs, and other processors

CPUs
Multiple cores driving
performance increases

GPUs
Increasingly general

purpose data-parallel
computing

Graphics
APIs and
Shading

Languages

Multi-
processor

programming –
e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

65

An N-dimensional domain of work-items
•Global Dimensions:
– 1024x1024 (whole problem space)

• Local Dimensions:
– 128x128 (work-group, executes together)

• Choose the dimensions (1, 2, or 3) that are
“best” for your algorithm

1024
10

24
Synchronization between
work-items possible only

within work-groups:
barriers and memory fences

Cannot synchronize
between work-groups

within a kernel

OpenCL Memory model

§ Private Memory
– Per work-item

§ Local Memory
– Shared within a

work-group
§ Global Memory /Constant

Memory
– Visible to all

work-groups
§ Host memory
–On the CPU

Memory management is explicit:
You are responsible for moving data from

host → global → local and back

Context and Command-Queues

§ Context:
– The environment within which kernels

execute and in which synchronization
and memory management is defined.

§ The context includes:
–One or more devices
– Device memory
–One or more command-queues

§ All commands for a device (kernel
execution, synchronization, and
memory operations) are submitted
through a command-queue.

§ Each command-queue points to a
single device within a context.

Queue

Context

Device

Device Memory

68

Execution model (kernels)

• OpenCL execution model … define a problem domain and
execute an instance of a kernel for each point in the domain

__kernel void times_two(
__global float* input,
__global float* output)

{
int i = get_global_id(0);
output[i] = 2.0f * input[i];

}

get_global_id(0)
10

Input

Output

0 1 2 3 4 5 6 7 8 9 1
0

1
1 12 1

3 14 1
5 16 1

7
1
8 19 2

0 21 2
2 23 2

4
2
5

0 2 4 6 8 10 1
2 14 1

6 18 2
0

2
2 24 2

6 28 3
0 32 3

4
3
6 38 4

0 42 4
4 46 4

8
5
0

The OpenCL Execution Model
• Host defines a command queue and associates it with a context

(devices, kernels, memory, etc).
• Host enqueues commands to the command queue

Gy

Gx

(wx, wy)

(wxSx + sx, wySy + sy)
(sx, sy) = (0,0)

(wxSx + sx, wySy + sy)
(sx, sy) = (Sx-1,0)

(wxSx + sx, wySy + sy)
(sx, sy) = (0, Sy-1)

(wxSx + sx, wySy + sy)
(sx, sy) = (Sx-1, Sy- 1)

Index Space Work items execute together as a work-group.

Kernel execution
commands launch
work-items: i.e. a
kernel for each point in
an abstract Index Space
called an NDRange

A (Gy by Gx)
index space

Third party names are the property of their owners.

OpenCL vs. CUDA Terminology
• Host defines a command queue and associates it with a context

(devices, kernels, memory, etc).
• Host enqueues commands to the command queue

Gy

Gx

(wx, wy)

(wxSx + sx, wySy + sy)
(sx, sy) = (0,0)

(wxSx + sx, wySy + sy)
(sx, sy) = (Sx-1,0)

(wxSx + sx, wySy + sy)
(sx, sy) = (0, Sy-1)

(wxSx + sx, wySy + sy)
(sx, sy) = (Sx-1, Sy- 1)

Index Space Work items execute together as a work-group.

Kernel execution
commands launch
work-items: i.e. a
kernel for each point in
an abstract Index Space
called an NDRange

A (Gy by Gx)
index space

CUDA Stream

Grid

Threads
Thread Block

Third party names are the property of their owners.

7171

Vector Addition - Kernel

__kernel void vec_add (__global const float *a,
__global const float *b,
__global float *c)

{
int gid = get_global_id(0);
c[gid] = a[gid] + b[gid];

}

7272

Vector Addition: Host Program

// create the OpenCL context on a GPU device
cl_context = clCreateContextFromType(0,

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with
context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0,
NULL, &cb);

devices = malloc(cb);
clGetContextInfo(context, CL_CONTEXT_DEVICES, cb,

devices, NULL);

// create a command-queue
cmd_queue = clCreateCommandQueue(context,

devices[0], 0, NULL);

// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context,

CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(cl_float)*n, srcA,

NULL);}
memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY

| CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB,
NULL);

memobjs[2] =
clCreateBuffer(context,CL_MEM_WRITE_ONLY,

sizeof(cl_float)*n,
NULL,

NULL);
// create the program
program = clCreateProgramWithSource(context, 1,

&program_source, NULL, NULL);

// build the program
err = clBuildProgram(program, 0, NULL, NULL, NULL,

NULL);

// create the kernel
kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values
err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],

sizeof(cl_mem));
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],

sizeof(cl_mem));
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],

sizeof(cl_mem));
// set work-item dimensions
global_work_size[0] = n;

// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1,

NULL, global_work_size, NULL, 0, NULL, NULL);

// read output array
err = clEnqueueReadBuffer(cmd_queue, memobjs[2],

CL_TRUE, 0, n*sizeof(cl_float), dst, 0, NULL, NULL);

7373

Vector Addition: Host Program

// create the OpenCL context on a GPU device
cl_context = clCreateContextFromType(0,

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with
context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0,
NULL, &cb);

devices = malloc(cb);
clGetContextInfo(context, CL_CONTEXT_DEVICES, cb,

devices, NULL);

// create a command-queue
cmd_queue = clCreateCommandQueue(context,

devices[0], 0, NULL);

// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context,

CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(cl_float)*n, srcA, NULL);}

memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY
| CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB,
NULL);

memobjs[2] =
clCreateBuffer(context,CL_MEM_WRITE_ONLY,

sizeof(cl_float)*n,
NULL, NULL);

// create the program
program = clCreateProgramWithSource(context, 1,

&program_source, NULL, NULL);

// build the program
err = clBuildProgram(program, 0, NULL, NULL, NULL,

NULL);

// create the kernel
kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values
err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],

sizeof(cl_mem));
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],

sizeof(cl_mem));
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],

sizeof(cl_mem));
// set work-item dimensions
global_work_size[0] = n;

// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1,

NULL, global_work_size, NULL, 0, NULL, NULL);

// read output array
err = clEnqueueReadBuffer(context, memobjs[2], CL_TRUE,

0, n*sizeof(cl_float), dst, 0, NULL, NULL);

Define platform and queues

Define Memory objects

Create the program

Build the
program

Create and setup kernel

Execute the kernel

Read results on the host

It’s complicated, but most of this is “boilerplate” and not as bad as it looks.

7474

arg [0]
value

arg [1]
value

arg [2]
value

arg [0]
value

arg [1]
value

arg [2]
value

In
Order
Queue

Out of
Order
Queue

GPU

Context

__kernel void
dp_mul(global const float *a,

global const float *b,
global float *c)

{
int id = get_global_id(0);
c[id] = a[id] * b[id];

}

dp_mul
CPU program binary

dp_mul
GPU program binary

Programs Kernels

arg[0] value

arg[1] value

arg[2] value

Images Buffers
In

Order
Queue

Out of
Order
Queue

Compute Device

GPUCPU

dp_mul

Programs Kernels Memory Objects Command Queues

OpenCL summary

Third party names are the property of their owners.

75

Whining about performance Portability
• Do we have performance portability today?

– NO: Even in the “serial world” programs routinely deliver single digit
efficiencies.

– If the goal is a large fraction of peak performance, you will need to
specialize code for the platform.

• However there is a pretty darn good performance portable
language. It’s called OpenCL

76

Matrix multiplication example:
Naïve solution, one dot product per element of C

• Multiplication of two dense matrices.

• To make this fast, you need to break the problem down into chunks that do
lots of work for sub problems that fit in fast memory (OpenCL local memory).

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

77

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)
{

int i, j, k;
for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {
for (k = 0; k < N; k++) {
C[i*N+j] += A[i*N+k] * B[k*N+j];

}
}

}
}

78

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)
{

int i, j, k;
for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
for (k = 0; k < N; k++)
C[i*N+j] += A[i*N+k] * B[k*N+j];

}

Let’s get rid of all
those ugly brackets

79

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)
{

int i, j, k;
float tmp;
int NB=N/block_size; // assume N%block_size=0

for (ib = 0; ib < NB; ib++)
for (i = ib*NB; i < (ib+1)*NB; i++)

for (jb = 0; jb < NB; jb++)
for (j = jb*NB; j < (jb+1)*NB; j++)
for (kb = 0; kb < NB; kb++)

for (k = kb*NB; k < (kb+1)*NB; k++)
C[i*N+j] += A[i*N+k] * B[k*N+j];

}

Break each loop
into chunks with
a size chosen to
match the size of
your fast memory

80

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)
{

int i, j, k;
float tmp;
int NB=N/block_size; // assume N%block_size=0

for (ib = 0; ib < NB; ib++)
for (jb = 0; jb < NB; jb++)

for (kb = 0; kb < NB; kb++)

for (i = ib*NB; i < (ib+1)*NB; i++)

for (j = jb*NB; j < (jb+1)*NB; j++)
for (k = kb*NB; k < (kb+1)*NB; k++)

C[i*N+j] += A[i*N+k] * B[k*N+j];
}

Rearrange loop nest
to move loops over
blocks “out” and

leave loops over a
single block

together

81

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)
{

int i, j, k;
float tmp;
int NB=N/block_size; // assume N%block_size=0

for (ib = 0; ib < NB; ib++)
for (jb = 0; jb < NB; jb++)

for (kb = 0; kb < NB; kb++)

for (i = ib*NB; i < (ib+1)*NB; i++)

for (j = jb*NB; j < (jb+1)*NB; j++)
for (k = kb*NB; k < (kb+1)*NB; k++)

C[i*N+j] += A[i*N+k] * B[k*N+j];
}

This is just a local
matrix multiplication

of a single block

82

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)
{

int i, j, k;
int NB=N/block_size; // assume N%block_size=0
for (ib = 0; ib < NB; ib++)

for (jb = 0; jb < NB; jb++)
for (kb = 0; kb < NB; kb++)

sgemm(C, A, B, …) // Cib,jb = Aib,kb * Bkb,jb

}

Note: sgemm is the name of the level three BLAS routine to multiply two matrices

= x

A(ib,:
)

B(:,jb
)

C(ib,jb
)

Mapping into A, B, and C from each work item

ocl_get_global_ID(0) = 16

oc
l_

ge
t_

gl
ob

al
_I

D(
1)

 =
 1

6

ocl_get_local_ID(0) = 4

ocl_get_local_ID(1) = 4

16 x 16 NDRange with
workgroups of size 4x4

Map Matrices A, B and C
onto this NDRange in a
row major order (N = 16
and Blksz = 4).

Understanding
index offsets in

the blocked
matrix

multiplication
program.

= x

A(Iblk,:) B(:,Jblk)C(Iblk,Jblk
)

Row Block Column Block
Mapping into A, B, and C from each work item

ocl_get_global_ID(0) = 16

oc
l_

ge
t_

gl
ob

al
_I

D(
1)

 =
 1

6

ocl_get_local_ID(0) = 4

ocl_get_local_ID(1) = 4

16 x 16 NDRange with
workgroups of size 4x4

Map Matrices A, B and C
onto this NDRange in a
row major order (N = 16
and Blksz = 4).

Understanding
index offsets in

the blocked
matrix

multiplication
program.

16 x 16 NDRange with
workgroups of size 4x4

Abase = Iblk*N*blksz
= 1 * 16 * 4

Bbase = Jblk*blksz =
1*4

Subsequent A blocks
by shifting index by
Ainc = blksz = 4

Subsequent B blocks
by shifting index by
Binc = blksz * N

= 4 * 16 = 64

Mapping into A, B, and C from each work item

Consider indices for
computation of the block
C(Iblk=2, Jblk=1)

Map Matrices A, B and C
onto this NDRange in a
row major order (N = 16
and Blksz = 4).

= x

A(Iblk,:) B(:,Jblk)C(Iblk,Jblk
)

Row Block Column Block
Understanding
index offsets in

the blocked
matrix

multiplication
program.

86

Portable performance: dense matrix multiplication

void mat_mul(int N, float *A, float *B, float *C)
{

int i, j, k;
int NB=N/block_size; // assume N%block_size=0
for (ib = 0; ib < NB; ib++)

for (jb = 0; jb < NB; jb++)
for (kb = 0; kb < NB; kb++)

sgemm(C, A, B, …) // Cib,jb = Aib,kb * Bkb,jb

}

Note: sgemm is the name of the level three BLAS routine to multiply two matrices

= x

A(ib,:
)

B(:,jb
)

C(ib,jb
) Transform the

basic serial
matrix multiply

into
multiplication
over blocks

Blocked matrix multiply: kernel
#define blksz 16
__kernel void mmul(

const unsigned int N,
__global float* A,
__global float* B,
__global float* C,
__local float* Awrk,
__local float* Bwrk)

{
int kloc, Kblk;
float Ctmp=0.0f;

// compute element C(i,j)
int i = get_global_id(0);
int j = get_global_id(1);

// Element C(i,j) is in block C(Iblk,Jblk)
int Iblk = get_group_id(0);
int Jblk = get_group_id(1);

// C(i,j) is element C(iloc, jloc)
// of block C(Iblk, Jblk)
int iloc = get_local_id(0);
int jloc = get_local_id(1);
int Num_BLK = N/blksz;

// upper-left-corner and inc for A and B
int Abase = Iblk*N*blksz; int Ainc = blksz;
int Bbase = Jblk*blksz; int Binc = blksz*N;

// C(Iblk,Jblk) = (sum over Kblk)
A(Iblk,Kblk)*B(Kblk,Jblk)
for (Kblk = 0; Kblk<Num_BLK; Kblk++)
{ //Load A(Iblk,Kblk) and B(Kblk,Jblk).

//Each work-item loads a single element of the two
//blocks which are shared with the entire work-

group

Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];
Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

barrier(CLK_LOCAL_MEM_FENCE);

#pragma unroll
for(kloc=0; kloc<blksz; kloc++)

Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

barrier(CLK_LOCAL_MEM_FENCE);

Abase += Ainc; Bbase += Binc;
}
C[j*N+i] = Ctmp;

}

Blocked matrix multiply: kernel
#define blksz 16
__kernel void mmul(

const unsigned int N,
__global float* A,
__global float* B,
__global float* C,
__local float* Awrk,
__local float* Bwrk)

{
int kloc, Kblk;
float Ctmp=0.0f;

// compute element C(i,j)
int i = get_global_id(0);
int j = get_global_id(1);

// Element C(i,j) is in block C(Iblk,Jblk)
int Iblk = get_group_id(0);
int Jblk = get_group_id(1);

// C(i,j) is element C(iloc, jloc)
// of block C(Iblk, Jblk)
int iloc = get_local_id(0);
int jloc = get_local_id(1);
int Num_BLK = N/blksz;

// upper-left-corner and inc for A and B
int Abase = Iblk*N*blksz; int Ainc = blksz;
int Bbase = Jblk*blksz; int Binc = blksz*N;

// C(Iblk,Jblk) = (sum over Kblk)
A(Iblk,Kblk)*B(Kblk,Jblk)
for (Kblk = 0; Kblk<Num_BLK; Kblk++)
{ //Load A(Iblk,Kblk) and B(Kblk,Jblk).

//Each work-item loads a single element of the two
//blocks which are shared with the entire work-

group

Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];
Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

barrier(CLK_LOCAL_MEM_FENCE);

#pragma unroll
for(kloc=0; kloc<blksz; kloc++)

Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

barrier(CLK_LOCAL_MEM_FENCE);

Abase += Ainc; Bbase += Binc;
}
C[j*N+i] = Ctmp;

}

Load A and B
blocks, wait for all
work-items to
finish

Wait for
everyone to
finish before
going to next
iteration of
Kblk loop.

It’s getting the indices
right that makes this hard

89

Matrix multiplication … Portable Performance (in MFLOPS)

Case CPU Xeon Phi Core i7, HD
Graphics NVIDIA Tesla

Sequential C (compiled
/O3) 224.4 1221.5

C(i,j) per work-item, all
global 841.5 13591 3721

C row per work-item, all
global 869.1 4418 4196

C row per work-item, A
row private 1038.4 24403 8584

C row per work-item, A
private, B local 3984.2 5041 8182

Block oriented approach
using local (blksz=16) 12271.3 74051 (126322*) 38348 (53687*) 119305

Block oriented approach
using local (blksz=32) 16268.8

Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel compiler 64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3.

Third party names are the property of their owners.
These are not official benchmark results. You may observe completely
different results should you run these tests on your own system.

Xeon Phi SE10P, CL_CONFIG_MIC_DEVICE_2MB_POOL_INIT_SIZE_MB = 4 MB
* The comp was run twice and only the second time is reported (hides cost of memory movement.

Intel Core i7-4850HQ @ 2.3 GHz which has an Intel HD Graphics 5200 w/ high speed memory. ICC 2013 sp1 update 2.
Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs

• Single Precision matrix multiplication (order 1000 matrices)

BUDE: Bristol University Docking Engine

One program running well on a wide range of platforms

91

Backup Content
(or what I’d cover if we had a couple more hours)

• Developing a complex kernel in OpenCL; the dream of performance portability

• The history of General Purpose GPU programming (GPGPU)

• Debunking the 100X GPU vs. CPU Myth

Let’s take a deeper look at the GPU:
The vertex pipeline

92

Vertex assembly

Primitive assembly

Rasterization

Fragment operations

Display

Vertex operations

Application

Primitive operations

struct {
float x,y,z,w;
float r,g,b,a;

} vertex;

struct {
vertex v0,v1,v2

} triangle;

struct {
short int x,y;
float depth;
float r,g,b,a;

} fragment;

struct {
int depth;
byte

r,g,b,a;
} pixel;

Frame buffer

Thanks to Kurt Akeley

Wouldn’t be cool if
these stages of the
graphics pipeline
programmable?

93

High-end GPUs have historically been programmable

Silicon Graphics RealityEngine GPU
1993

Intel i860
RISC CPU

Custom ASIC
for processor
interconnect

• I860 billed as a “Cray-on-a-chip”
0.80 micron technology
2.5M transistors

Programming GPUs

First paper on GPGPU
programming I could
find dates to 1995 …
though the term
GPGPU didn’t appear
in the literature until
~2000.

95

The evolutions of the GPU

1st generation: Voodoo 3dfx (1996)

2nd Generation:
GeForce 256/Radeon 7500 (1998)

3rd Generation: GeForce3/Radeon 8500 (2001). The first GPU to
allow a limited programmability in the vertex pipeline.

4th Generation: Radeon 9700/GeForce FX (2002): The first
generation of “fully-programmable” graphics cards.

Third party names are the property of their owners

5th Generation: GeForce 8800/HD2900 (2006) and
the birth of CUDA

96

GPGPU arrives: 2006

Third party names are the property of their owners

• GeForce 8800/HD2900:
– Ground-up GPU redesign
– Support for Direct3D 10
– Geometry Shaders
– Stream out / transform-feedback
– Unified shader processors

• Support for General GPU
programming

• Fortunately for NVIDIA, the academic community had been working on
GPGPU programming for almost a decade.

• Ian Buck at Stanford was wrapping up his dissertation “Stream computing
on Graphics Hardware” and the language “Brook”.

• He moved over to NVIDIA and led the effort to create CUDA.
• CUDA was extremely influential … Late in 2008 Apple, AMD, Intel,

NVIDIA, Imagination Technologies and several other companies released
a vendor-neutral, portable standard for stream computing called OpenCL.

CS194:
Keutzer/Mattson

97

Understanding GPGPU programming:
SIMD Architecture

• Single Instruction Multiple Data (SIMD)
• Central controller broadcasts instructions to

multiple processing elements (PEs)
– Only requires one controller for whole array
– Only requires storage for one copy of program
– All computations fully synchronized

Array
Controller

Inter-PE Connection Network

P
E

M
e
m

P
E

M
e
m

P
E

M
e
m

P
E

M
e
m

P
E

M
e
m

P
E

M
e
m

P
E

M
e
m

P
E

M
e
m

Control
Data

Thinking Machines Corp CM-
200

(early 90’s).

98

Nvidia GPU Architecture

• Nvidia GPUs are a collection of “Streaming Multiprocessors”
– Each SM is analogous to a core of a Multi-Core CPU

• Each SM is a collection of SIMD execution pipelines that share control
logic, register file, and L1 Cache

99

GPU Platform Model

• The GPUs are driven by a CPU which …
–Manages the code to execute on the GPUs
–Maintains a queue of kernels to execute
–Manages memory on the GPU and movement between the

CPU and the GPU

One or More GPUs

……
…

…
……

…
…

……
…

…
……

…

CPU

100

Backup Content
(or what I’d cover if we had a couple more hours)

• Developing a complex kernel in OpenCL; the dream of performance portability

• The history of General Purpose GPU programming (GPGPU)

• Debunking the 100X GPU vs. CPU Myth

101

NVIDIA Performance claims
An Nvidia slide from CLSAC’18 talk

“CPU Node” = 1 AWS Broadwell Intel® Xeon® E5 vCPU (thread)

16 V100 GPUs connected by NVLink with “hand tuned” CUDA

4 2016 era Intel Xeon® servers running in the cloud
over ethernet with Spark and “off the shelf” Python.

You gotta watch
these guys … their

marketing folks “take
liberties” with the

facts

102

100X speedups from GPUS: a common myth

Triple digit
speedups? Really?
Is this a reasonable

goal?

Source: a great ESC’15 lecture by a smart person who made a mistake!!!

103

A high-level view of performance

•Well optimized applications are either compute or
bandwidth bounded

• For compute bound applications:
Performance = Arch efficiency * Peak Compute Capability

• For bandwidth bound applications:
Performance = Arch efficiency * Peak Bandwidth Capability

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010

Reasonable Speedup Expectations

§ Chip A § Chip B

PerfB = EffB * PeakB(Comp or BW)

Speedup B
A
=
PerfB
PerfA

=
EffB
EffA

∗
PeakA (Comp_or _BW)
PeakB (Comp_or _BW)

PerfA = EffA * PeakA(Comp or BW)

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010

Speedup expectations for well optimized code:
CPU vs. GPU

Core i7 960
• Four OoO Superscalar Cores, 3.2GHz
• Peak SP Flop: 102GF/s
• Peak BW: 30 GB/s

GTX 280
• 30 SMs (w/ 8 In-order SP each), 1.3GHz
• Peak SP Flop: 933GF/s*
• Peak BW: 141 GB/s

Max Speedup: GTX 280 over Core i7 960

Compute Bound Apps: (SP) 933/102 = 9.1x
Bandwidth Bound Apps: 141/30 = 4.7x

Assuming both Core i7 and GTX280 have the same efficiency:

* 933GF/s assumes mul-add and the use of SFU every cycle on GPU

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010

106

A fair comparison of CPUs and GPUs:
Methodology

– Start with previously best published code / algorithm
– Validate claims by others
– Optimize BOTH CPU and GPU versions
– Collect and analysis performance data

Note: Only computation time on the CPU and GPU is measured. PCIe transfer time and host
application time are not measured for GPU. Including such overhead will lower GPU performance

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010

What was claimed

1
0

[C
hr

is
te

n0
8]

[E
gl

of
f0

8]

[G
en

ov
es

e0
9]

[N
ag

a0
7]

[V
ol

ko
v0

8]

[B
ai

le
y0

9]

[V
az

qu
ez

09
]

[S
at

is
h0

9] [A
lc

an
ta

ra
09

]

[Y
an

g0
8]

[L
an

g0
7]

Geomean: 22x

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010

108

What we measured

Geomean on our version: 2.5x

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010

109

Sparse matrix vector product: GPU vs. CPU

108

0

1

2

3

4

5

6

7

8

9
Si

ng
le

 P
re

cis
io

n
Sp

M
VM

FE
M

/c
an

t
(G

FL
OP

S)

Source: Victor Lee et. al.
“Debunking the 100X GPU vs. CPU
Myth”, ISCA 2010

NVIDIA® GTX 280 GPU vs. an Intel® Core i7 960 CPU

GPU CPU
Baseline

8 threads
on 4
cores

Vectorize Register
tiling +

Pipelining

Cache
Blocking

• [Vazquez09]: reported a 51X speedup for an NVIDIA® GTX295 vs. a Core
2 Duo E8400 CPU … but they used an old CPU with unoptimized code

• Heavily optimized both the GPU kernels and the CPU code.
• We did not include memory movement onto the GPU … even

though that would make the CPU look better!

Result: a 2:1 speedup … which makes
sense given better bandwidth of GDDR5

*third party names are the property of their owners

110

Common Mistakes when comparing a CPU and a GPU

• Compare the latest GPU against an old CPU
• Highly optimized GPU code vs. unoptimized CPU code

– I’ve seen numerous papers compare optimized CUDA vs. Matlab or python
• Parallel GPU code vs. serial, unvectorized CPU code.
• Ignore the GPU penalty of moving data across the PCI bus from the CPU to the GPU

GPUs are great and depending on the algorithm can show two to four fold
speedups. But not 100+ … that’s just irresponsible and should not be

tolerated!!

