Jobstats: A Slurm-Compatible Job Monitoring Platform for CPU and GPU Clusters

Josko Plazonic¹, <u>Jonathan Halverson</u>² and Troy Comi^{1,3}

- ¹OIT Research Computing, Princeton University
- ²Princeton Institute of Computational Science and Engineering, Princeton University
- ³Department of Chemical and Biological Engineering, Princeton University

https://tinyurl.com/8ar52z65

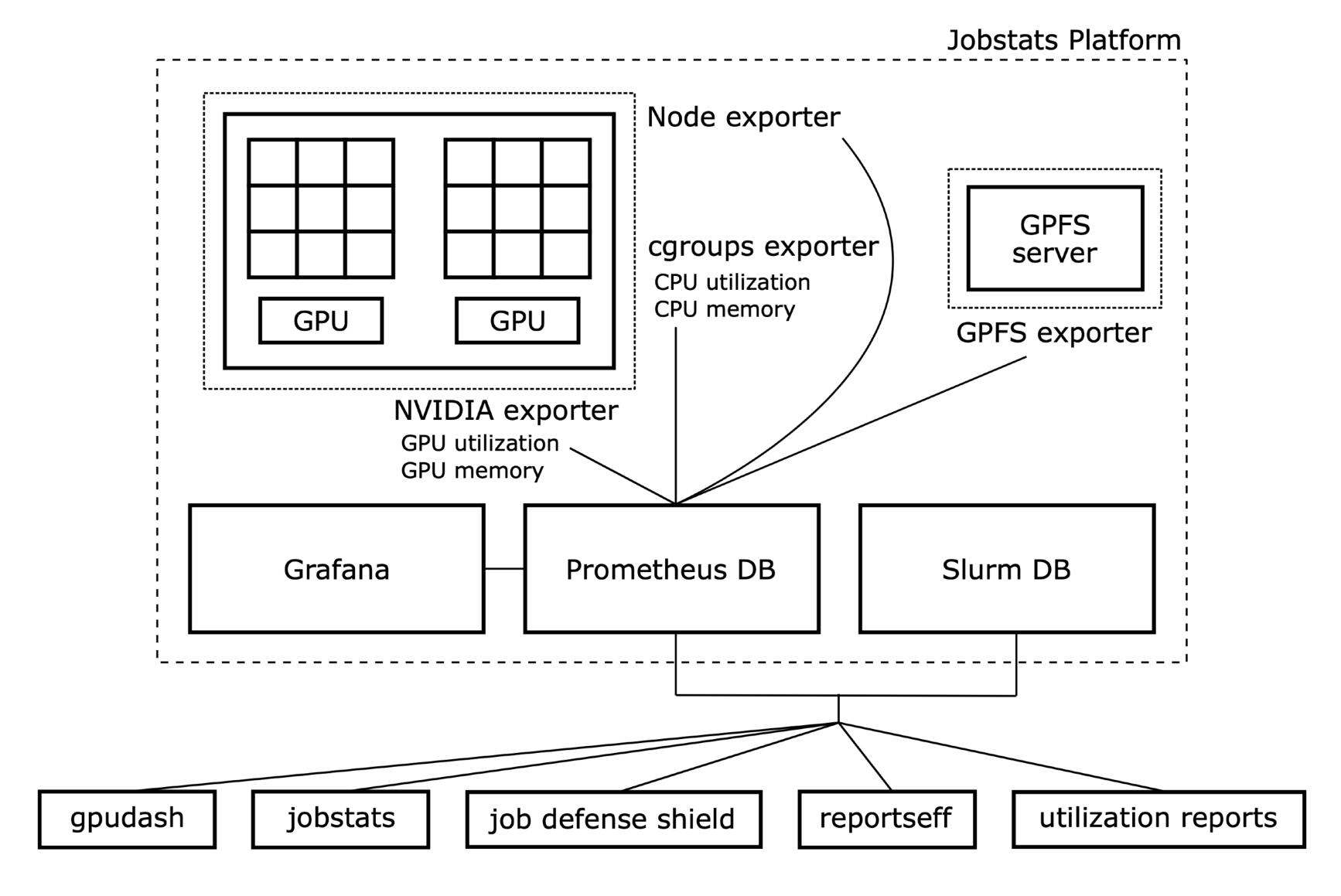
PEARC July 25, 2023 Portland, OR USA

Motivation

Job monitoring is important for

- evaluating hardware performance
- identifying underperforming jobs
- troubleshooting failed jobs and more

About Princeton Research Computing


- 4 large clusters (100,000 CPU-cores, 500+ GPUs)
- 2000 active users per year
- Slurm workload manager

What We Were Missing

- Did not have a tool to monitor GPU jobs
- CPU memory usage for multi-node jobs was inaccurate
- Efficiency reports (seff) lacked detailed information
- Users had limited options when troubleshooting failed jobs

Existing job monitoring platforms

- Ganglia
- XDMoD
- TACC Stats
- MAP
- LIKWID
- PIKA

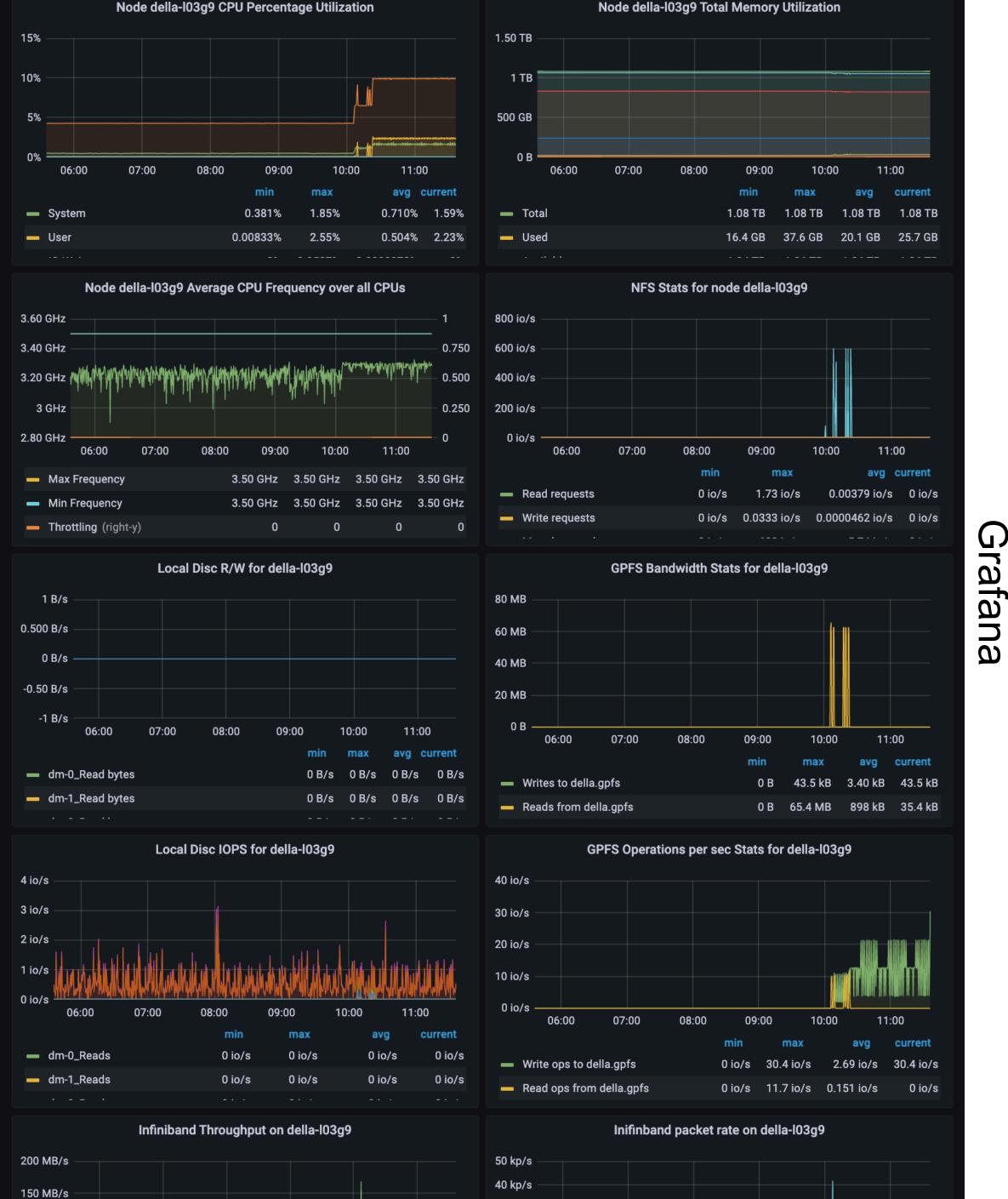
Four exporters make the job statistics available to the Prometheus database

Metrics

The following **job-level** metrics are available in both Grafana and the jobstats command

- CPU Utilization
- CPU Memory Utilization
- GPU Utilization
- GPU Memory Utilization


The following **job-level** metrics are exposed only in Grafana:


- GPU Temperature
- GPU Power Usage

The following **node-level** metrics are exposed only in Grafana:

- CPU Percentage Utilization
- Total Memory Utilization
- Average CPU Frequency Over All CPUs
- NFS Statistics
- Local Disc R/W
- GPFS Bandwidth Statistics
- Local Disc IOPS
- GPFS Operations per Second Statistics
- InfiniBand Throughput
- InfiniBand Packet Rate
- InfiniBand Errors

https://github.com/PrincetonUniversity/jobstats#grafana

Overview of Jobstats Setup

- 1. Switch to cgroup based job accounting from Linux process accounting
- 2. Setup the exporters: cgroup, node, GPU (on the nodes) and, optionally, GPFS (centrally)
- 3. Setup the prolog.d and epilog.d scripts on the GPU nodes
- 4. Setup the Prometheus server and configure it to scrape data from the compute nodes and all configured exporters
- 5. Setup the slurmctldepilog.sh script for long-term job summary retention
- 6. Lastly, configure Grafana and Open OnDemand

jobstats

jobstats is a command for generating a detailed job efficiency report

Requirements

- Python 3.6+
- Requests 2.20+
- blessed (optional)

Visit the GitHub Repository

PRINCETON UNIVERSITY

\$ jobstats 39798795

```
Slurm Job Statistics
______
       Job ID: 39798795
 NetID/Account: aturing/math
     Job Name: sys_logic_ordinals
        State: COMPLETED
        Nodes: 2
    CPU Cores: 48
   CPU Memory: 256GB (5.3GB per CPU-core)
         GPUs: 4
 QOS/Partition: della-gpu/gpu
      Cluster: della
   Start Time: Fri Mar 4, 2022 at 1:56 AM
     Run Time: 18:41:56
   Time Limit: 4-00:00:00
                          Overall Utilization
______
 CPU utilization [||||
                                                           10%]
                                                            6%]
 CPU memory usage [|||
 68%]
 66%]
                          Detailed Utilization
 CPU utilization per node (CPU time used/run time)
    della-i14g2: 1-21:41:20/18-16:46:24 (efficiency=10.2%)
    della-i14g3: 1-18:48:55/18-16:46:24 (efficiency=9.5%)
 Total used/runtime: 3-16:30:16/37-09:32:48, efficiency=9.9%
 CPU memory usage per node - used/allocated
     della-i14g2: 7.9GB/128.0GB (335.5MB/5.3GB per core of 24)
    della-i14g3: 7.8GB/128.0GB (334.6MB/5.3GB per core of 24)
 Total used/allocated: 15.7GB/256.0GB (335.1MB/5.3GB per core of 48)
 GPU utilization per node
     della-i14g2 (GPU 0): 65.7%
    della-i14g2 (GPU 1): 64.5%
    della-i14g3 (GPU 0): 72.9%
    della-i14g3 (GPU 1): 67.5%
 GPU memory usage per node - maximum used/total
    della-i14g2 (GPU 0): 26.5GB/40.0GB (66.2%)
    della-i14g2 (GPU 1): 26.5GB/40.0GB (66.2%)
    della-i14g3 (GPU 0): 26.5GB/40.0GB (66.2%)
    della-i14g3 (GPU 1): 26.5GB/40.0GB (66.2%)
                                Notes
 * This job only used 6% of the 256GB of total allocated CPU memory. For
  future jobs, please allocate less memory by using a Slurm directive such
  as --mem-per-cpu=1G or --mem=10G. This will reduce your queue times and
  make the resources available to other users. For more info:
    https://researchcomputing.princeton.edu/support/knowledge-base/memory
 * This job only needed 19% of the requested time which was 4-00:00:00. For
  future jobs, please request less time by modifying the ——time Slurm
  directive. This will lower your queue times and allow the Slurm job
  scheduler to work more effectively for all users. For more info:
    https://researchcomputing.princeton.edu/support/knowledge-base/slurm
 * For additional job metrics including metrics plotted against time:
  https://mydella.princeton.edu/pun/sys/jobstats (VPN required off-campus)
```

```
$ jobstats 39798795
                           Slurm Job Statistics
        Job ID: 39798795
 NetID/Account: aturing/math
      Job Name: sys_logic_ordinals
         State: COMPLETED
        Nodes: 2
     CPU Cores: 48
    CPU Memory: 256GB (5.3GB per CPU-core)
          GPUs: 4
 QOS/Partition: della-gpu/gpu
       Cluster: della
    Start Time: Fri Mar 4, 2022 at 1:56 AM
      Run Time: 18:41:56
    Time Limit: 4-00:00:00
                           Overall Utilization
 CPU utilization [|||||
                                                             10%]
 CPU memory usage [|||
                                                              6%]
 GPU utilization
                                                             68%]
 66%]
```

^{*} For additional job metrics including metrics plotted against time: https://mydella.princeton.edu/pun/sys/jobstats (VPN required off-campus)

NetID/Account: aturing/math

```
Detailed Utilization
```

```
CPU utilization per node (CPU time used/run time)
    della-i14g2: 1-21:41:20/18-16:46:24 (efficiency=10.2%)
    della-i14g3: 1-18:48:55/18-16:46:24 (efficiency=9.5%)
Total used/runtime: 3-16:30:16/37-09:32:48, efficiency=9.9%
CPU memory usage per node - used/allocated
    della-i14g2: 7.9GB/128.0GB (335.5MB/5.3GB per core of 24)
    della-i14g3: 7.8GB/128.0GB (334.6MB/5.3GB per core of 24)
Total used/allocated: 15.7GB/256.0GB (335.1MB/5.3GB per core of 48)
GPU utilization per node
    della-i14g2 (GPU 0): 65.7%
    della-i14g2 (GPU 1): 64.5%
    della-i14g3 (GPU 0): 72.9%
    della-i14g3 (GPU 1): 67.5%
GPU memory usage per node - maximum used/total
    della-i14g2 (GPU 0): 26.5GB/40.0GB (66.2%)
    della-i14g2 (GPU 1): 26.5GB/40.0GB (66.2%)
    della-i14g3 (GPU 0): 26.5GB/40.0GB (66.2%)
    della-i14g3 (GPU 1): 26.5GB/40.0GB (66.2%)
```

```
Slurm Job Statistics

Job ID: 39798795

NetID/Account: aturing/math

Job Name: sys_logic_ordinals

State: COMPLETED

Nodes: 2

CPU Cores: 48

CPU Memory: 256GB (5.3GB per CPU-core)

GPUs: 4

QOS/Partition: della-gpu/gpu

Cluster: della

Start Time: Fri Mar 4, 2022 at 1:56 AM

Run Time: 18:41:56

Time Limit: 4-00:00:00
```

\$ jobstats 39798795

CPU utilization [||||| CPU memory usage [|||

Notes

68%]

- * This job only used 6% of the 256GB of total allocated CPU memory. For future jobs, please allocate less memory by using a Slurm directive such as --mem-per-cpu=1G or --mem=10G. This will reduce your queue times and make the resources available to other users. For more info: https://researchcomputing.princeton.edu/support/knowledge-base/memory
- * This job only needed 19% of the requested time which was 4-00:00:00. For future jobs, please request less time by modifying the --time Slurm directive. This will lower your queue times and allow the Slurm job scheduler to work more effectively for all users. For more info: https://researchcomputing.princeton.edu/support/knowledge-base/slurm
- * For additional job metrics including metrics plotted against time: https://mydella.princeton.edu/pun/sys/jobstats (VPN required off-campus)

Summary Statistics

After a job finishes, summary statistics are stored in the admincomment field of the Slurm database.

```
sacct [...] -o jobid,user,nnodes,ncpus,...,admincomment
```

- Slurm database grows in size (~5%) depending on the number of nodes per job
- Time-series data is expunged after 6 months while summary statistics are stored permanently

```
summary statistics
```

```
"gpus": 2,
"nodes": {
 "della-i14g2": {
    "cpus": 24,
    "gpu_total_memory": {
      "0": 42949672960,
      "1": 42949672960
    "gpu_used_memory": {
      "0": 28453568512,
      "1": 28453568512
    "gpu_utilization": {
      "0": 65.7,
      "1": 64.5
    "total_memory": 137438953472,
    "total_time": 164480.1,
    "used_memory": 8444272640
```

To generate email reports using jobstats after a job finishes, modify slurm.conf:

```
MailProg=/usr/local/bin/jobstats_mail.sh
```

Users can then receive the jobstats output using these Slurm directives:

```
#SBATCH --mail-type=end
#SBATCH --mail-user=aturing@princeton.edu
```

This allows users to see detailed efficiency information with the custom notes.

What about users that ignore or do not subscribe to these emails?

Job Defense Shield

Job Defense Shield is a Python tool for sending automated email alerts to users with underperforming or misconfigured jobs.

```
$ ./job_defense_shield.py --help
usage: job_defense_shield.py [-h] [--zero-cpu-utilization]
                              [--zero-gpu-utilization]
                              [--zero-util-gpu-hours] [--low-xpu-efficiency]
                              [--datascience] [--excess-cpu-memory] [--mig]
                              [--cpu-fragmentation] [--gpu-fragmentation]
                              [--excessive-time] [--serial-using-multiple]
                              [--longest-queued] [--most-cores] [--most-gpus]
                              [--days N] [-M CLUSTERS] [-r PARTITION]
                              [--num-top-users N] [--files FILES]
                              [--email] [--report] [--check]
```

Requirements

- Python 3.6+
- pandas 1.2+
- jobstats (optional)

Visit the GitHub Repository

Send emails to users that are over-allocating CPU memory:

```
$ ./job_defense_shield.py --excess-cpu-memory --days=7 --email
```

The software obtains the data, applies filters, and sends the emails. For example:

```
sacct -X -a -P -n -S 7/18 -o jobid,user,nnodes,ncpus,...,admincomment
import pandas
df = pandas.DataFrame(...)

from alert.excess_cpu_memory import ExcessCPUMemory
xmem = ExcessCPUMemory(df, ...)
xmem.send_emails_to_users()
```

Alert	Emails Sent per Week	Grace Period
Actively running jobs where a GPU has 0% utilization for longer than 1 hour from start of job	17	1 day
Jobs where a CPU had 0% utilization	6	7 days
Users in the top N by usage with low CPU or GPU utilization (over past 7 days)	3	7 days
Jobs that could have been run on a less powerful GPU (e.g., an NVIDIA MIG GPU versus A100)	6	10 days
Jobs with excessive run time limits	2	7 days
Jobs that request too many CPU nodes (e.g., 1 CPU-core per node over 100 nodes)	13	7 days
Multi-GPU jobs that only allocate 1 GPU per node	1	7 days
Jobs that run a serial code while allocating more than 1 CPU-core	9	7 days
Jobs that use large-memory nodes but do not need them	16	7 days
Jobs that request much more than the default CPU memory but do not use it	4	7 days
Users with over 100 GPU-hours at 0% utilization	1	7 days

Job Defense Shield

Sat May 13 13:59:08 2023: Request 44866 was acted upon.

Transaction: Ticket created by <email>

Queue: General

Subject: Re: Low CPU efficiency on TigerCPU

Owner: Nobody

Requestors: <email>

Ccs: <username>@princeton.edu

Status: new

Ticket <URL: https://cses.princeton.edu/tickets/Ticket/Display.html?id=44866 >

Thanks to this automated e-mail I found a bug in my job submission scripts which caused the OMP thread count not to be properly passed to the program. I was running it with srun --ntasks-per-node=10 --cpus-per-task=4 myprogram. I thought the --cpus-per-task=4 part would take care of setting up the OMP variables, but apparently it doesn't. So now I use OMP_NUM_THREADS=4 srun --ntasks-per-node=10 --cpus-per-task=4 myprogram. The bug has been present in my run scripts for about two months, including when I ran some quite costly jobs, sadly. But at least it's fixed now. Sorry about that.

reportseff is a command for displaying a simple Slurm efficiency report for several jobs at once.

Requirements

- Python 3.7+
- click 6.7+
- jobstats (optional)

pypi v2.7.5

GitHub Repository

\$ reportset

JobID	User	State	Start	Elapsed	Timelimit	NNodes	NCPUS	ReqMem	Partition	CPUEff	MemEff	GPUEff	GPUMem
48461674	jdh4	COMPLETED	2023-06-12	00:00:09	01:06:00	1	1	4G	gpu	33.3%	0.0%		
48463751	jdh4	FAILED	2023-06-12	00:00:00	01:06:00	1	1	4G	gpu		0.0%		
48463796	jdh4	COMPLETED	2023-06-12	00:00:11	01:06:00	1	1	4G	gpu	63.6%	0.0%		
48463979	jdh4	CANCELLED	None	00:00:00	00:05:00	1	1	4G	gputest		0.0%		
48463980	jdh4	COMPLETED	2023-06-12	00:00:12	01:05:00	1	1	4G	gpu		0.0%		
48463989	jdh4	CANCELLED	2023-06-12	00:13:27	01:05:00	1	1	4G	gpu	0. 3%	0.7 %	0.0%	0.8%
48464041	jdh4	COMPLETED	2023-06-12	00:11:35	01:06:00	1	1	4G	gpu	92.6%	72.0%	18.9%	2.8%
48474781	jdh4	COMPLETED	2023-06-12	00:01:38	00:05:00	1	1	4G	gputest	0. 2%	0.6%	0.0%	0.8%
48486321	jdh4	COMPLETED	2023-06-13	00:00:24	00:05:00	1	1	4G	gputest	4.2%	0.0%		
48486344	jdh4	COMPLETED	2023-06-13	00:00:23	00:05:00	1	1	4G	gputest		0.0%		
48486357	jdh4	CANCELLED	None	00:00:00	01:05:00	1	1	4G	gpu		0.0%		
48486358	jdh4	CANCELLED	None	00:00:00	01:05:00	1	1	32000M	mig		0.0%		
48487363	jdh4	COMPLETED	2023-06-13	00:17:01	01:05:00	1	1	32000M	mig		0.1%	0.0%	0.0%
48506000	jdh4	COMPLETED	2023-06-14	00:00:04	00:20:00	1	1	4G	gputest		0.0%		
48865465	jdh4	COMPLETED	2023-06-29	00:00:11	16:40:00	1	1	4G	gpu		0.0%		
48865468	jdh4	CANCELLED	None	00:00:00	16:40:00	1	1	4G	gpu		0.0%		
48952062	jdh4	COMPLETED	2023-07-03	00:07:55	01:00:00	1	1	32000M	mig	0. 9%	0.8%	0.0%	0.0%
49227318	jdh4	COMPLETED	2023-07-14	00:00:42	00:05:00	1	1	4G	gputest	61.9%	96.1%		
49227340	jdh4	COMPLETED	2023-07-14	00:00:42	00:50:00	1	1	4G	gputest	61.9%	96.2%		
49227561	jdh4	OUT_OF_MEM	2023-07-14	00:31:08	00:50:00	1	1	4G	gputest	98.6%	98.5%	15.6%	98.6%
49228551	jdh4	TIMEOUT	2023-07-14	00:10:29	00:05:00	1	1	4G	gputest		0.6%	0.0%	0.8%
49365843	jdh4	COMPLETED	2023-07-21	00:00:32	01:15:00	1	1	4G	gpu		0.0%		
49452370	jdh4	COMPLETED	2023-07-24	00:00:28	01:00:00	1	32	128G	gputest	72.5%	0.0%		
49452375	jdh4	COMPLETED	2023-07-24	00:54:55	01:00:00	1	32	128G	gputest	99.1%	4.8%	48.4%	5.1%

GPU Dashboard

gpudash is a command that generates a text-based dashboard showing the utilization of each GPU on the cluster

Requirements

- Python 3.6+
- blessed 1.17+

Visit GitHub Repository

\$ gpudash

GPU UTILIZATION (Mon Mar 6)

		9:00 AM	9:10 AM	9:20 AM	9:30 AM	9:40 AM	9:50 AM	10:00 AM
comp-g1	0	ho895:97	ho895:98	ho895:98	ho895:97	ho895:97	ho895:98	ho895:97
	1	ho895:98	ho895:97	ho895:97	ho895:98	ho895:98	ho895:99	ho895:99
	2	bi153:86	bi153:86	bi153:86	bi153:86	bi153:86	bi153:86	bi153:86
	3	or417:83	or417:96	or417:98	or417:57	or417:98	or417:98	or417:86
comp-g2	0	tc756:24	tc756:28	tc756:26	tc756:25	tc756:24	tc756:0	tc756:0
	1	tc756:57	tc756:58	tc756:58	tc756:58	tc756:57	tc756:56	tc756:56
	2	tc756:44	tc756:45	tc756:44	tc756:43	tc756:40	tc756:54	tc756:55
	3	tc756:16	tc756:16	tc756:16	tc756:16	tc756:16	tc756:0	tc756:0
comp-g3	0	kt284:86	kt284:80	kt284:87	kt284:41	kt284:83	kt284:83	kt284:88
	1	kt284:86	kt284:85	kt284:80	kt284:1	kt284:81	kt284:82	kt284:85
	2	kt284:83	kt284:84	kt284:84	kt284:18	kt284:87	kt284:81	kt284:88
	3	kt284:86	kt284:83	kt284:84	kt284:40	kt284:83	kt284:80	kt284:87
comp-g4	0	bi153:86	bi153:85	bi153:86	bi153:85	bi153:86	bi153:85	bi153:86
	1	dn214:84	dn214:54	dn214:74	dn214:77	dn214:79	dn214:71	dn214:8
	2	pw351:0	pw351:0	pw351:0	pw351:0	pw351:0	ib377:0	ib377:0
	3	dn214:65	dn214:54	dn214:52	dn214:63	dn214:59	dn214:63	dn214:14
comp-g5	0	vs828:76	vs828:72	vs828:70	vs828:65	vs828:72	vs828:72	vs828:70
	1	vs828:76	vs828:64	vs828:70	vs828:64	vs828:68	vs828:66	vs828:65
	2	vs828:73	vs828:69	vs828:74	vs828:67	vs828:71	vs828:72	vs828:73
	3	th845:99	th845:99	th845:98	th845:98	th845:97	th845:97	th845:97
comp-g6	0	IDLE	IDLE	IDLE	IDLE	n1827:84	n1827:90	n1827:87
	1	IDLE	IDLE	IDLE	IDLE	IDLE	n1827:81	n1827:88
	2	IDLE	IDLE	IDLE	IDLE	IDLE	n1827:81	n1827:79
	3	sy414:12	IDLE	IDLE	IDLE	IDLE	n1827:89	n1827:92
comp-g7	0	pn417:89	pn417:88	pn417:70	pn417:90	pn417:81	pn417:79	pn417:64
	1	pn417:52	pn417:51	pn417:47	pn417:76	pn417:78	pn417:79	pn417:75
	2	th845:99	th845:98	th845:99	th845:99	th845:98	th845:98	th845:98
	3	pn417:98	pn417:99	pw351:0	pn417:33	pn417:43	pn417:61	pn417:35
	ı	CDII u+	ilization	ic 0%				
			ilization					
			ilization					
			ilization					
				is 75-100%				
		GPU UT	TTT59(101)	T2 \2-T00%				

Utilization Reports

utilization reports is a tool for sending detailed usage reports to users and group leaders by email

Visit the GitHub Repository

```
$ ./utilization_reports.py --report-type=sponsors --months=3
$ ./utilization_reports.py --report-type=users --months=1
```

Requirements

- Python 3.6+
- pandas 1.2+

Sponsor: Garegin Andrea (gandrea) Period: Nov 1, 2021 - Jan 31, 2022

Della

User	Name	CPU-hours	GPU-hours	Jobs Account		Partition(s)	
edevonte	Egino Devonte	125017 (59%)	0	3465	phys	cpu	
mlakshmi	Moacir Lakshmi	82638 (39%)	0	63	arch	cpu,ds	
rgozde	Robert Gözde	4238 (2%)	1018	255	chem	cpu,gpu	

Your group used 211893 CPU-hours or 1.7% of the 12321247 total CPU-hours on Della. Your group is ranked 20 of 169 by CPU-hours used. Similarly, your group used 1018 GPU-hours or 1.2% of the 88329 total GPU-hours yielding a ranking of 18 of 169 by GPU-hours used.

Tiger

User	Name	CPU-hours	GPU-hours Job		Account	Partition(s)	
jiryna	Jaxson Iryna	1065273 (92%)	0	252	math	serial	
sime	Shahnaz Ime	98071 (8%)	3250	192	pol	gpu	

Your group used 1163344 CPU-hours or 3.0% of the 35509100 total CPU-hours on Tiger. Your group is ranked 7 of 101 by CPU-hours used. Similarly, your group used 3250 GPU-hours or 0.6% of the 554101 total GPU-hours yielding a ranking of 45 of 101 by GPU-hours used.

Detailed Breakdown

Cluster	User	Partition	CPU-hours	CPU-rank	CPU-eff	GPU-hours	GPU-rank	GPU-eff	Jobs
Della	edevonte	e cpu	125017	12/231	88%	N/A	N/A	N/A	3465
Della	mlakshmi	_ cpu	80638	121/231	68%	N/A	N/A	N/A	11
Della	mlakshmi	. ds	2000	2/16	71%	N/A	N/A	N/A	22
Della	rgozde	e cpu	3238	6/79	95%	N/A	N/A	N/A	41
Della	rgozde	e gpu	1000	16/49	91%	250	7/17	52%	101
Tiger	jiryna	serial	1065273	17/22	91%	N/A	N/A	N/A	252
Tiger	sime	e gpu	98071	26/41	9%	3250	29/41	17%	192

Future Work

- Acquire more GPU metrics (e.g., Tensor Core usage, occupancy, memory bandwidth)
- Start working with metrics for data storage (which is available from Prometheus)
- Publish jobstats, job defense shield and other tools to PyPI

Summary

- The Jobstats job monitoring platform and tools have improved the ease-of-use and efficiency of our systems
- Only a standard server is required to run the platform
- The jobstats custom notes and the job defense shield emails guide users in an automated way

For getting started with the Jobstats platform: https://github.com/PrincetonUniversity/jobstats

For support or questions: cses@princeton.edu