
Debugging & Profiling
Code, in Python and R

Abhishek Biswas

Research Software Engineer, Princeton University

ab50@princeton.edu

Wintersession / PICSciE Training
Workshops

Attendance :
https://cglink.me/2gi/c19244831122151821

mailto:ab50@princeton.edu

Objectives

• Overview of code structuring and debugging

• Overview of Integrated Development Environments (IDE)

• Python – PyCharm

• R – RStudio

• Debugging typical software errors

• Program crashes, Incorrect output

• Profiling

• Inefficient resource utilization (Time, Memory, CPU)

Design is Important

• Good code design will make finding bugs easier

• Easier to track down bugs in modules

• Easier to write targeted testing code

• Easier to replace and fix the bug

• Less chances of introducing more bugs

Print Statements and Comments

• Printing and logging messages are the most basic and

useful tool

• Can’t figure out how to setup a debugger

• Parallel execution

• Help isolate the portion of the code

• Commenting out code

• Comment out portions of code and see if it runs

• Again, helps isolate the problem

PDB – commandline debugging

• Program crashes produce a stack trace with line
numbers

• Python provides a command like debugger too
• pdbpp is a more user-friendly version

• Let’s do the first demo!

Traceback (most recent call last):

File "no_furniture.py", line 16, in <module>

for item in items.sort():

TypeError: 'NoneType' object is not iterable

Breakpoints, Watches and Evaluation

• Breakpoints allow you to halt the flow of execution
• Stop a few lines before the error

• The error in most cases happens before the line that
triggers it

• Watches allow you to look at the values of the
variables

• Evaluate allows you to insert and run new code to
check things

IDEs Help Design and Navigate

• Help you manage your files

• Separate out modules

• Clearly save src, test and metadata files

• They help you navigate through your code

• Learn the shortcuts

• Help you setup debugging environment

• Help you setup build and release processes

Exercise 1: PyCharm Setup

• Download Python Project:

• Link: https://tinyurl.com/5fc4byb6

• Download and extract the project directories

• Start Anaconda Navigator and launch PyCharm

• Go to File > New Project

• Navigate to the “python_debug” project directory

• Create project using existing files

• Understand project structure

• Set source root as the “src” directory (right click option)

https://tinyurl.com/5fc4byb6

Exercise 2 : Fix The Tests!

• Fix the failing test cases…

• Useful links
• https://byjus.com/maths/area-of-shapes

• https://byjus.com/volume-formulas

• https://byjus.com/surface-area-formulas

https://byjus.com/maths/area-of-shapes/
https://byjus.com/volume-formulas
https://byjus.com/surface-area-formulas/

Conditional Breakpoints

• Sometimes breakpoints need to be conditional

• Useful when breaking at a certain iteration

• Breaking on a certain call of the function

• Run the “triangle_area_many.py” example

• Figure out which of the 10000 triangles is failing!

Exercise 2: Profiling Python Code

• Create a new python project using to
“python_profile” directory

• python -m cProfile -s tottime search.py
• simple_search
• sort_search
• best_search

• Why is simple_search faster?
• Profile the code
• What is taking so long?

Did anyone run the tests
for search?

Check correctness before profiling!

Generating Growth Curves

• Profiling is used to generate growth curves

• Let’s look at 3 sorting algorithms
• python sort.py

Python Memory Profiling

• Memory profiling show the instructions that
significantly increase the memory usage

• memory_profiler module allows users to decorate
functions

• Shows total memory usage and lines that add to
memory footprint
• python mem_profile.py

Exercise 3 : Rstudio Debugging

• Download the file:

• Navigate to the R_debug folder

• Click on the files to open Rstudio

• Click on Source button to run the scripts

• Try to fix the infinite loop!

• random_debug.R

Exercise 4 : Rstudio Profiling

• Download the file:

• Navigate to the R_profile folder

• Click on the files to open Rstudio

• Click on Source button to run the scripts

• Let’s benchmark some sorting and dataframe

operations

Profvis Interactive Profiling

• Produces an interactive graph

• Statistical profiling using Rprof
• 10ms intervals

• The flame graph shows the lines of code where
time was spent

Have a great day!

	Slide 1: Debugging & Profiling Code, in Python and R
	Slide 2: Objectives
	Slide 3: Design is Important
	Slide 4: Print Statements and Comments
	Slide 5: PDB – commandline debugging
	Slide 6: Breakpoints, Watches and Evaluation
	Slide 7: IDEs Help Design and Navigate
	Slide 8: Exercise 1: PyCharm Setup
	Slide 9: Exercise 2 : Fix The Tests!
	Slide 10: Conditional Breakpoints
	Slide 11: Exercise 2: Profiling Python Code
	Slide 12: Did anyone run the tests for search?
	Slide 13: Generating Growth Curves
	Slide 14: Python Memory Profiling
	Slide 15: Exercise 3 : Rstudio Debugging
	Slide 16: Exercise 4 : Rstudio Profiling
	Slide 17: Profvis Interactive Profiling
	Slide 18: Have a great day!

