GPU COMPUTING WITH R AND KERAS

Danny Simpson
Graduate Student, Lewis-Sigler Institute for Integrative Genomics
PhD Advisors Britt Adamson and Barbara Engelhardt
Why R?
R

- Has a user-friendly IDE (RStudio)
- Statistical framework
- Easily extensible
- Handles data in nearly any format
- Creates publication-ready graphics quickly
3D HL60 Cell Projection
3D convolutions are computationally expensive
How do I get this code working again?
Getting your environment ready

• Set up a conda environment using Python 3.6 and install Tensorflow and Keras
 • tensorflow-gpu

• Also install Keras package in R

• These are the only prerequisites to install
Using the environment

- Add `use_condaenv(ENVNAME)` to R scripts
- Request a GPU node
- Load the following modules (version matters!)
 - Cudatoolkit/10.0
 - Cudnn/cuda-10.0/7.5.0
- Activate the conda environment in job script
Code and tutorial are available at

github.com/simpsondl/mnist_r_tutorial

and

Defining and compiling the model

```r
# Define the model
model <- keras_model_sequential()

model %>%
  layer_dense(units = 256, activation = 'relu', input_shape = c(784)) %>%
  layer_dropout(rate = 0.4) %>%
  layer_dense(units = 128, activation = 'relu') %>%
  layer_dropout(rate = 0.3) %>%
  layer_dense(units = 10, activation = 'softmax')

# Compile model
model %>%
  compile(loss = 'categorical_crossentropy',
          optimizer = optimizer_rmsprop(),
          metrics = c('accuracy'))
```
Training and evaluating

```
# Train model
history <- model %>%
  fit(x_train_pp, y_train_pp,
      epochs = 30, batch_size = 128,
      validation_split = 0.2)
```
Example Images and Labels
Acknowledgments

• Research Computing Support

• Adamson and Engelhardt Labs
 • Ann Cirincione

• Tensorflow and PyTorch User Group

• Lewis-Sigler Institute for Integrative Genomics