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Audience

● Programmers of any level who 
are not familiar with parallel 
programming paradigms.

● Researchers with computational 
components in their projects and 
limited parallel programming 
exposure.



Objective
● Briefly review the classic parallel programming taxonomy. (Flynn 1966)
● Familiarize core concepts, using them to describe and differentiate parallel 

programming models at the application level.
● Provide additional resources.
● Demonstrate a few common changes for implementations (if time).

Essentially, this is a brief survey of a wonderfully enormous landscape.



Situational Analysis
● A data science problem which computes the 

same stats models for many time series.
● It takes about four mins to run in serial on my 

laptop. I’d like it to take less so I can tweak my 
model, or play with hyperparameter 
optimization.

● I don’t want to change code too much, or 
change original implementation.

● A physics simulation which models radiative 
transfer in atmosphere.

● It takes minutes to simulate a time step, but 
group intends to simulate tens of thousands of 
time steps.

● At meaningful scientific resolutions, requires a 
lot of RAM.
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5 mins

Case Study and
Additional Resources

15 mins

Patterns, and What 
Common Approaches 
Feel Like



If programming is hard,

parallel programming can be

rreaealllyly  hardh.ard.
rreeaallllyy har had.rd.
rearlleya llhyard ha.rd.
reraellayl halrdy .hard.
realreallly hardy .hard.
realrley allhy haarrdd..
rreeallya hlardly .hard.

# TODO That code might have a minor bug.



Parallel Programming is challenging because:
● Variety of solutions and technologies
● Code Changes
● Algorithmic modifications

○ These can range from minor to completely 
new algorithms.

● Sneaky bugs
○ Races
○ Non determinism
○ Numerical (floating point associativity...)

● Results limited by weakest link

This presentation should introduce you to the first 
topic.

Additional workshops can demonstrate common 
code changes, and the most common patterns (for 
something like OMP, MPI or CUDA). I’ll just 
give you a peek...

Debugging and performance tuning come with 
“time on the tools”.  Try stuff.



Flynn’s 
Taxonomy

Classic description of low level 
operations.

Comes from a time when people 
worked “closer to the machines”.

SISD

Single Instruction Single Data

MISD

Multiple Instruction Single Data (Historical)

SIMD

Single Instruction Multiple Data (Vector)

MIMD

Multiple Instruction Multiple Data (Multi-processing)



Flynn’s 
Taxonomy

Has been extended many ways 
over the years. Some stuck.

These are more commonly used 
today. Note, abstraction moves 

farther and farther from the 
machine...

SIMD

Single Instruction Multiple Data (Vector)

SIMT

Single Instruction Multiple Thread (CUDA/GPU)

SPMD

Single Program Multiple Data

MPMD

Multiple Program Multiple Data (Example later)



Concepts

● Processes vs Threads

● Execution Scheduling

● Granularity, Coupling, 
Synchronicity

● Memory Architecture

● Scaling



Processes Vs 
Threads

Processes have their own memory.

Threads belong to a process and 
share memory.

You should know there exists 
advanced techniques which fork this 
distinction, but this is a useful way 
to think about it.



Execution Scheduling



Serial
# A sequence of tasks, over a sequence of data, using a single computational 
resource.

for x in ListOfDataFiles:

   download(x) # Network

   longComputation(x) # CPU

   writeToArchive(x) # Disk IO



Parallel
# Still a sequence of tasks, but we’ll perform the same tasks simultaneously using 
multiple computational resources.

Time 0 Time 1 Time 2

Computer 1 download(x1) longComputation(x1) writeToArchive(x1)

Computer 2 download(x2) longComputation(x2) writeToArchive(x2)

Computer 3 download(x3) longComputation(x3) writeToArchive(x3)



Concurrent (Pipelined)
# Compositions of tasks, multiple in progress (overlapping).

● Note that concurrence can still be effective even with a single processor, because 
it can progress distinct components of a larger system. In this example, we might 
rely on the operating system or hardware to service network and disk in the 
background while the CPU is mostly busy computing…. 

Time 0    Time 1 Time 2 Time 3

   download(x1)    download(x2)    download(x3)

   
longComputation(x1)

   
longComputation(x2)

   
longComputation(x3)

   writeToArchive(x1)    writeToArchive(x2)    writeToArchive(x3)



Why even consider Concurrency?
In real systems with finite resources there are limits to parallelism, and we do a lot 
more than just CPU arithmetic.

Silly example: downloading three files from the same resource simultaneously 
might actually be slower than downloading sequentially.

We may be using limited cluster resources poorly, particularly when scaled up.

In many cases it can be practical to compose and overlap (pipeline) tasks, even 
purely computational ones, such as a Multiple Program model up next.

Concurrent memory/computation tasks is truly a critical performance consideration 
for GPU programming, and occasionally for large MPI programs as well.



A Simple Abstract Example
Let’s say we have an Ocean model and Atmosphere model. They are both distinct 
parallel programs.  They require asymmetric computational resources (1024 and 96 
cores respectively) for similar time to solution (a step).  We wish to run a time step 
of each, then exchange data, which we’ll consider virtually free.

If we lease 1024 cores, then run a step of each model sequentially in this 
configuration we are wasting roughly half of our compute cycles.

Step1 Ocean1 …. …. …. Ocean1024

Step1 Atmos1 …. Atmos96 Idle…. ….Idle

Step2 Ocean1 …. …. …. Ocean1024

Step2 Atmos1 …. Atmos96 Idle…. ….Idle



Parallelism and Concurrency (MPMD)
Instead let’s imagine the two distinct parallel programs both making progress...

This may require 1120 cores, 1024+96. However, if the Ocean and Atmosphere 
programs’ time steps are balanced, we no longer have idle cores...

… and we now require about half the wall time to solution by leveraging both 
concurrency and parallelism. Roughly half the resources too...

Process1 …. Process1120

Step1 Ocean1 …. Ocean1024 Atmos1 Atmos96

Step2 Ocean1 …. Ocean1024 Atmos1 Atmos96



Granularity, Coupling 
and Synchronicity



Granularity
Granularity is commonly used to describe the amount of arithmetic relative to non 
arithmetic work.

Examples of non arithmetic work would be system/network communication and  IO.

Generally expressed as “Coarse” vs “Fine”. Course would have a relatively high 
amount of computation relative to communication.

The term “Embarrassingly Parallel” is used to describe problems which can be 
parallelized in such a way they have minimal communication requirements. This is an 
extremal case of course granularity.

In practice when people are expressing their parallel programming ideas, I have 
found that Granularity generally can be expressed on a spectrum of “Coupling” and 
“Synchronization”.



Coupling

Tight

Vectorization (SIMD)

Threading

Messaging

Loose

Distributed Systems

Coupling is the functional strength of dependency in the application.

Another way to think of the axis of coupling is at what level in the application we 
are operating, or synchronizing. I have listed in terms of the computer, but more 
likely it would be in consideration how your problem subdivides.

CPU Instructions

Cache/RAM

Processes/Network

Job/Task



Synchronization

Distributed Systems

Synchronization is the temporal dependency of individual steps.

Another way to think of the axis of synchronization is the variety of time scales we 
can manage coupling in our application.  These range from instruction level (SIMD or 
SIMT), frequently synchronized (common blocking MPI) code, to totally 
asynchronous (Distributed) systems.

SIMD

Threading

Messaging



Communication Synchronization
Synchronous Fortunately, messaging 

libraries for parallel 
programming (MPI) wrap 
this up in a relatively simple 
way.

This crudely represents what 
happens behind the scenes of 
a single line blocking 
MPI_SEND - MPI_RECV 
pair.

 

Process1

Send Msg to Process 2

Blocks; Wait for Ack

Blocks; Wait for Ack

Ack received.

…. continue

Process2

Block; Waiting For Data from Process1

Receives Msg

Send Ack

….continue



Communication Asynchronization
One sided, Asynchronous: Again, messaging libraries 

for parallel programming 
(MPI) wrap this up in a 
simpler way.

This would represent a one 
sided pattern

non blocking MPI_ISEND 
with blocking MPI_RECV 
pair.

True async, send and forget, 
is much harder, and out of 
scope of this talk. More a 
systems topic...

 

Process1

Send Msg to Process 2

…. continues

Process2

Block; Waiting For Data from Process1

Receives Msg

…. continues



Memory Architecture



A single CPU eventually expanded to multiple single CPU 
chips in a server/cluster. Each having separate memory 
systems.

This has been replaced by multicore chips which share 
memory. This sharing of high speed memory facilitates 
threading for computation (a la OpenMP).

 

A very deep topic...
 Also multicore (or multiple) chips, with asymmetric 
access to multiple memory subsystems.

Add a GPU, and you have even more sophisticated 
memory hierarchy!

CPU RAM

CPU RAM

CPU RAM

CPU

CPU

CPU

CPU

RAM

Upper Cache

CPU

CPU

CPU

CPU

RAM Bank 1

Upper Cache

CPU

CPU

CPU

CPU

Upper Cache

Study of modern memory systems and their 
relationship to the processors in modern system 
design would largely fall under “NUMA”, non 
uniform memory architecture, and is a topic in 
Performance Tuning.

RAM Bank 2



Scaling made Simple
No Formulas Necessary



Strong Scaling

For a fixed a problem size:

How does time to solution scale 
with core count?

Answers: Does my parallel algorithm 
perform as expected.

Serial code is the limiting factor.

Communication can get expensive.

Synchronization is never perfect.

Amdahl (1967)



Weak Scaling

Serial code is admitted as a constant 
factor, and ignored in the scaling 
formula.

For a scaling machine size:

How does time to solution scale 
with problem size?

Answers: How efficient is the parallel 
part of my program?

Downscaled, Linear, Superscaled?

Gustafson (1988)



Scaling is studied 
in Performance 
Tuning



Mapping Concepts



Differentiate parallel paradigms by how memory 
and communication is managed.

Shared Memory Distributed Memory Hybrid, Distributed-Shared-Memory

Posix Threads (pthread) MPI MPI+OpenMP

shmem Spark/Hadoop Multi-GPU

OpenMP Dask

SIMD or vector intrinsics ( Intel MKL) General Multiprocessing 

C++ Parallel STL (Intel TBB) PGAS (Cray SHMEM)

GPU* (CUDA, OpenACC, HIP etc)

* GPU’s have their own non uniform memory architecture.  Generally it is faster than 
RAM, with difference types of memory shared across various tiers of the GPU device.



Differentiate parallel paradigms by how memory 
and communication is managed.

All of these are generally considered tightly coupled.  While some are more tightly 
coupled than others, optimizing coupling and synchronization generally promotes 
performance in these systems.

Shared Memory Distributed Memory Hybrid, Distributed-Shared-Memory

Posix Threads (pthread) MPI MPI+OpenMP

shmem Spark/Hadoop Multi-GPU

OpenMP Dask

SIMD or vector intrinsics ( Intel MKL) General Multiprocessing

C++ Parallel STL (Intel TBB) PGAS (Cray SHMEM)

GPU* (CUDA, OpenACC, HIP etc)



Situational Analysis
● A data science problem which computes the 

same stats models for many time series.
○ Sounds embarrassingly parallel.

● It takes about four mins to run in serial on my 
laptop. I’d like it to take less so I can tweak my 
model, or play with hyperparameter 
optimization.

○ Problem isn’t too large.
○ Probably wants to keep running on laptop,

■ Scaling out not important.
■ Loose/uncoupled

● I don’t want to change code too much, or 
change original implementation.

Good approaches to this situation might be:
Multiprocessing (whole program in parallel)
OpenMP or MKL if the stats models are 

simple...

● A physics simulation which models radiative 
transfer in atmosphere.

○ Sounds tightly coupled.
○ Lots of computation.

● It takes minutes to simulate a time step, but we 
intend to simulate tens of thousands of time 
steps.

○ Performance, scaling and synchronicity will be 
important.

● At meaningful scientific resolutions, requires a 
lot of RAM.

○ Sounds like we need a special machine, or 
Distributed Memory on a cluster.

Good approaches here might be:
MPI (or MPI + OpenMP)
CUDA (or MPI+CUDA)



A more in depth intro from LLNL (go at your own pace):

https://hpc.llnl.gov/training/tutorials/introduction-parallel-computing-tutorial

More Hands on Tutorials:

LLNL https://hpc.llnl.gov/training/tutorials
TACC https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-basics.html
MPI Tutorials (Love their graphics) https://mpitutorial.com/
And of course Princeton has lots of resources which you should learn about in our focused workshops.

Links:

Go Blog (Concurrency Is not Parallelism)

Books:

CUDA By Example https://developer.nvidia.com/cuda-example
The Linux Programming Interface (if you are interested in POSIX/Systems programming).

Misc Resources

https://hpc.llnl.gov/training/tutorials/introduction-parallel-computing-tutorial
https://hpc.llnl.gov/training/tutorials
https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-basics.html
https://mpitutorial.com/
https://blog.golang.org/waza-talk
https://developer.nvidia.com/cuda-example
https://man7.org/tlpi/


Common MPI Patterns - These should be covered in an 
MPI workshop, but the abstractions, like “Reduction” help 
to think about any parallel programming.

Images Courtesy  
https://github.com/mpitutorial/mpitutorial/tree/gh-pages 
(MIT License)

https://github.com/mpitutorial/mpitutorial/tree/gh-pages


Examples

● Serial

○ Python

○ C

● OpenMP

● MPI

● CUDA (GPU)

● CUPY

These are provided as a Github Repo:

https://github.com/garrettwrong/parallel_primer

We can briefly look at example changes to get a 
rough idea of modifications.



OpenMP
● Low investment
● Usually maintains original 

(serial) program.
● Good performance
● Lowest barrier to entry among 

the classic HPC options.
● Does not scale past multicore

In this problem, to achieve a nice 
(nearly linear!) speedup required only 
six source code lines and a compiler 
flag.

Note that, forgetting any one of the 
sections does not yield the speedup. 
(Weakest link)

Makefile:
For gcc, add -fopenmp to your C flags.

.c:
#include <omp.h>
….
#pragma omp parallel private(i, xi, j, xj, k)
#pragma omp for reduction(+:tmp)
 for(i=0; i<n; i++){
    for(j=0; j<n; j++){

….
#pragma omp parallel for private(i, j, val)  

reduction(min:minD) reduction(max:maxD)
 for(i=0; i<n; i++){
    for(j=0; j<i; j++){

…
#pragma omp parallel private(i)
#pragma omp for reduction(+:cnt)
for(i=0; i<neps; i++){

…



MPI
● Moderate amount of changes

○ Bounds checking
○ block/chunk sizing

● Required modification to algorithm to 
parallelize:

○ “Gather” Pattern
○ “All Gather” Pattern
○ “Reduction” Pattern

● Requires large problem size to overcome 
networking overhead.

○ Small problems actually slower.
● Once made MPI, it can be harder to port to 

other approaches (GPU).
● Potentially scales to large systems, and 

problems that would not fit on a single 
machine.

You’ll need some housekeeping to start...

#include <mpi.h>

   /* MPI Initialization */
   int mpi_pid, numprocs;
   MPI_Init (&argc, &argv);
   MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
   MPI_Comm_rank (MPI_COMM_WORLD, &mpi_pid);

/* We’ll look at some common mods next.

   /* MPI shutdown */
   MPI_Finalize();



Common MPI Modifications
Frequently computing number of elements:

  nelem = (n + numprocs - 1) / numprocs;

Branches for operations like printing, or serial 
code blocks:

  if(mpi_pid == 0){...}

Computing/Checking Bounds:
  ubnd = nelem*(mpi_pid+1);

  if(n < ubnd){

    ubnd = n;

  }

Changing loops:
  for(i=nelem*mpi_pid; i<ubnd; i++){...}

Generally speaking, this constitutes a lot of housekeeping.  However boring that may be, it still must be 
done with great care.  Parallel programming bugs are notoriously challenging.



● Larger investment of time
● High performance (for some problems*)
● Reformulates algo components into kernels.

○ Something like Min/Max is not just a for 
loop anymore if you want to go parallel.

○ Kernels require “launching” code
● Requires memory management

○ There are ways around this, but if you want 
to go fast you still need to think about it.

● Can result in substantial amounts of 
bespoke code (not unlike MPI, just 
different)

● Hard to port CUDA code back to other 
platforms.

CUDA
Mainly we need to map our problem to a “Grid” of 
“Blocks”, where each “Block” is an entry in a 1D, 
2D, or 3D memory model.

I’ll give example of some housekeeping code.



Example Code Supporting CUDA
Memory management, allocations:

  double* X_dev;
  cudaMalloc(&X_dev, n * d * sizeof(double));

Management of transfers:

  cudaMemcpy(X_dev, X, n * d * sizeof(double), 
cudaMemcpyHostToDevice);

Computing thread and block ids, usually in place of 
for loops:

  const int tidx = blockDim.x * blockIdx.x + 
threadIdx.x;
  const int tidy = blockDim.y * blockIdx.y + 
threadIdx.y;

Compute numbers of threads and blocks.
Simplest 1D case:

  int blocksz = 1024;
  int nblocks = (n + blocksz -1 ) / blocksz;

Launching a kernel: 
all_pairs_distances_kernel
<<<nblocks, blocksz>>>(X_dev, n, d, D);

Make sure you don’t go out of bounds!:
  if( tidx >= n){
    return;
  }
  if( tidy >= neps){
    return;
  }



Thank you for attending!

Also a big thanks to everyone at PICSciE and OIT Research 
Computing for their efforts hosting these events!


