Y
OAY

PUERASNOCEN A

NVIDIA Corporation

<A NVIDIA.

What is CUDA? rf%a

CUDA Architecture

Expose GPU parallelism for general-purpose computing
Retain performance

CUDA C/C++

Based on industry-standard C/C++
Small set of extensions to enable heterogeneous programming
* Straightforward APIs to manage devices, memory etc.

* This session introduces CUDA C/C++

Introduction to CUDA C/C++

* What will you learn in this session?
Start with vector addition
Write and launch CUDA C/C++ kernels

* Manage GPU memory
* Manage communication and synchronization

¢ (Some knowledge of C programming is assumed.)

>

NVIDIA

Heterogeneous Computing f,%n

= Terminology:
= Host The CPU and its memory (host memory)
= Device The GPU and its memory (device memory)

Device

>

NVIDIA

Simple Processing Flow

=

; IIIII
S ik

S T, e
5 T |8

PCI Bus

¢

1. Copy input data from CPU memory to GPU

memory

>

NVIDIA

sy

GigaThread™

AN

PCI Bus

<

P
o)
=
)
=
2
o
®)

caching data on chip for performance

memory
2. Load GPU program and execute,

Simple Processing Flow

1. Copy input data from CPU memory to GPU

Simple Processing Flow rf,%n

GigaThread™

1. Copy input data from CPU memory to GPU
m e m O ry erconnect

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to CPU
memory

Parallel Programming in CUDA C/C++ ,f,%

= GPU computing is about massive parallelism!

= We need an interesting example...
= We’ll start with vector addition
g -
a b C

GPU Kernels: Device Code ,ff,%

__global void mykernel (void) ({
}

®* CUDA C/C++ keyword giobal indicates a function that:

* Runs on the device
® Is called from host code (can also be called from other device code)

® nvcc separates source code into host and device components

* Device functions (e.g. mykernel ()) processed by NVIDIA compiler
* Host functions (e.g. main ()) processed by standard host compiler

¢ gcc, cl.exe

GPU Kernels: Device Code ,f%u

mykernel<<<1l,1>>>() ;
* Triple angle brackets mark a call to device code

* Also called a “kernel launch”
* We’ll return to the parameters (1,1) in a moment

® That’s all that is required to execute a function on the GPU!

Memory Management

* Host and device memory are separate entities

Device pointers point to GPU memory o
May be passed to/from host code M@% 9/»
May not be dereferenced in host code -

* Host pointers point to CPU memory
May be passed to/from device code
May not be dereferenced in device code

* Simple CUDA API for handling device memory
cudaMalloc (), cudaFree (), cudaMemcpy ()
¢ Similar to the C equivalents malloc (), free (), memcpy ()

<X

>
P—

NVIDIA

Running code in parallel <

* GPU computing is about massive parallelism
* So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

I

add<<< N, 1 >>>();

* Instead of executing add () once, execute N times in parallel

Vector Addition on the Device <3

NVIDIA

® With add () running in parallel we can do vector addition

* Terminology: each parallel invocation of add () is referred to as a block

* The set of blocks is referred to as a grid
* Each invocation can refer to its block index using blockIdx.x

__global void add(int *a, int *b, int *ec) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

* By using blockidx.x to index into the array, each block handles a
different index

Vector Addition on the Device <3

NVIDIA

__global void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

* On the device, each block can execute in parallel:

Block O Block 1 Block 2 Block 3

Vector Addition on the Device: add () rf,%\

® Returning to our parallelized add () kernel
__global void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

* Let’s take a look at main()...

Vector Addition on the Device: main () f,fzm

#define N 512

int main(void) {
int *a, *b, *c; // host copies of a, b, c
int *d a, *d b, *d c; // device copies of a, b, c

int size = N * sizeof(int);

// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);
cudaMalloc((void **)&d c, size);

// Alloc space for host copies of a, b, ¢ and setup input values
a = (int *)malloc(size); random ints(a, N);

o
c

(int *)malloc(size); random ints(b, N);

(int *)malloc(size) ;

Vector Addition on the Device: main () S,%A

// Copy inputs to device
cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice)

cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice) ;

// Launch add() kernel on GPU with N blocks
add<<<N,1>>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup
free(a); free(b); free(c);
cudaFree (d_a); cudaFree(d b); cudaFree(d c);

return 0;

Review (1 of 2) <

Difference between host and device
Host CPU
Device GPU

Using oclobal to declare a function as device code

Executes on the device
* Called from the host (or possibly from other device code)

.

Passing parameters from host code to a device function

Review (2 of 2) <

* Basic device memory management
cudaMalloc ()
cudaMemcpy ()
¢ cudaFree ()

® Launching parallel kernels
* Launch N copies of add () with add<<<N,1>>>(..) ;
® Use blockIdx.x to access block index

CUDA Threads >

NVIDIA

* Terminology: a block can be split into parallel threads

»

®»

Let’s change add () to use parallel threads instead of parallel blocks

__global void add(int *a, int *b, int *c) ({
c[threadIdx.x] = a[threadldx.x] + b[threadIdx.x];
}

We use threadIdx.x instead of blockIdx.x
Need to make one change in main():
add<<< 1, N >>>();

Combining Blocks and Threads N>

NVIDIA

* We’ve seen parallel vector addition using:
Many blocks with one thread each
One block with many threads

* Let’s adapt vector addition to use both blocks and threads
* Why? We’ll come to that...

® First let’s discuss data indexing...

Indexing Arrays with Blocks and Threads

* No longer as simple as using blockIdx.x and threadIdx.x
* Consider indexing an array with one element per thread (8 threads/block)

threadIdx.x

threadIdx.x

threadIdx.x

<3

NVIDIA

0|1

2

3

4

9

6

01

2

3

4

5

§)

1

2

3

4

5

§)

~

blockIdx.x = 0

~

blockIdx.x = 1

blockIdx.x = 3

v

* With M threads/block a unique index for each thread is given by:

int index

threadIdx.x + blockIdx.x * M;

Indexing Arrays: Example f,%n

* Which thread will operate on the red element?

[0 112|3|4 (5|6 |7]|8 910111213141516171819202122232425262728293031]

int index = threadIdx.x + blockIdx.x * M;
5 + 2 * 8;
21;

Vector Addition with Blocks and Threads &

® Use the built-in variable blockpim.x for threads per block
int index = threadIdx.x + blockIdx.x * blockDim.x;

* Combined version of add () to use parallel threads and parallel

blocks
__global void add(int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x * blockDim.x;
c[index] = a[index] + b[index];
}
* What changes need to be made in main()?

Addition with Blocks and Threads: main () f,%A

#define N (2048+%2048)

#define THREADS PER BLOCK 512

int main(void) {
int *a, *b, *c; // host copies of a, b, c
int *d a, *d b, *d c; // device copies of a, b, c

int size = N * sizeof (int);

// Alloc space for device copies of a, b, ¢
cudaMalloc ((void **)&d a, size);
cudaMalloc ((void **)&d b, size);
cudaMalloc((void **)&d c, size);

// Alloc space for host copies of a, b, ¢ and setup input values
a = (int *)malloc(size); random ints(a, N);

b = (int *)malloc(size); random ints(b, N);

c = (int *)malloc(size) ;

Addition with Blocks and Threads: main () ,f,%A

// Copy inputs to device
cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice) ;

// Launch add() kernel on GPU
add<<<N/THREADS PER BLOCK, THREADS PER BLOCK>>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup
free(a); free(b); free(c);
cudaFree (d_a); cudaFree(d b); cudaFree(d c);

return 0;

Handling Arbitrary Vector Sizes N>

* Typical problems are not friendly multiples of biockpim.x

* Avoid accessing beyond the end of the arrays:

__global void add(int *a, int *b, int *c, int n) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < n)
c[index] = a[index] + b[index];
}

* Update the kernel launch:
add<<< (N + M-1) / M,M>>>(d a, d b, d ¢, N);

Why Bother with Threads? 2

* Threads seem unnecessary
They add a level of complexity
What do we gain?

® Unlike parallel blocks, threads have mechanisms to:
¢ Communicate
® Synchronize

* To look closer, we need a new example...

Review ff%a

Launching parallel kernels
Launch N copies of add () with add---N/M,M (..);
Use to access block index
Use to access thread index within block

=

* Assigh elements to threads:

int index = threadIdx.x + blockIdx.x * blockDim.x;

1D Stencil f%ﬂ

* Consider applying a 1D stencil to a 1D array of elements
* Each output element is the sum of input elements within a radius

* If radius is 3, then each output element is the sum of 7 input
elements:

\ J \ J
h 4 h 4

radius radius

Implementing Within a Block

* Each thread processes one output element
* blockDim.x elements per block

® Input elements are read several times
* With radius 3, each input element is read seven times

>

NVIDIA

Sharing Data Between Threads >

NVIDIA

¢ Terminology: within a block, threads share data via shared memory
¢ Extremely fast on-chip memory, user-managed

¢ Declare using shared |, allocated per block

¢ Data is not visible to threads in other blocks

Implementing With Shared Memory <

Cache data in shared memory
® Read (blockDim.x + 2 * radius) input elements from global memory to

shared memory
* Compute blockDim.x output elements
® Write blockDim.x output elements to global memory

* Each block needs a halo of radius elements at each boundary

FANNAANAANNAAANANANANN
: - halo ovn right

L L L
Y

blockDim.x output elements

halo on left

Stencil Kernel

__global void stencil 1ld(int *in, int *out) {
__shared int temp[BLOCK SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] =
if (threadIdx.
temp[lindex
temp[lindex

in[gindex

X

in[gindex] ;

< RADIUS) {

RADIUS] = in[gindex - RADIUS];

BLOCK_SIZE]
BLOCK SIZE];

>

NVIDIA

Stencil Kernel rf,%A

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

// Store the result
out[gindex] = result;

(D
Data Race! nf:%n

* The stencil example will not work...

= Suppose thread 15 reads the halo before thread 0 has fetched it...

temp[lindex] = in[gindex]; Store at temp[18]
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS = in[gindex - RADIUS]; Skipped, threadldx > RADIUS
temp[lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];

}

int result = 0;
result += temp[lindex + 1]; Load from temp[19]

__syncthreads() :r%n

void _ syncthreads();

* Synchronizes all threads within a block
Used to prevent RAW / WAR / WAW hazards

® All threads must reach the barrier
* In conditional code, the condition must be uniform across the block

Stencil Kernel <X

NVIDIA

__global void stencil 1ld(int *in, int *out) ({
__shared int temp[BLOCK SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + radius;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];

// Synchronize (ensure all the data is available)
__syncthreads() ;

Stencil Kernel <X

NVIDIA

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

// Store the result
out [gindex] = result;

Review (1 of 2) <

* Launching parallel threads
Launch N blocks with M threads per block with kernel<<<N,M>>>(..) ;
Use blockIdx.x to access block index within grid
Use threadIdx.x to access thread index within block

* Allocate elements to threads:

int index = threadIdx.x + blockIdx.x * blockDim.x;

Review (2 of 2) <

Use shared to declare a variable/array in shared memory

Data is shared between threads in a block
Not visible to threads in other blocks

® Use syncthreads() as a barrier
® Use to prevent data hazards

.

®

Further Study

An introduction to CUDA:
® https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/

Another introduction to CUDA:
® https://devblogs.nvidia.com/even-easier-introduction-cuda/

CUDA Programming Guide:

® https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

CUDA Documentation:
® https://docs.nvidia.com/cuda/index.html
® https://docs.nvidia.com/cuda/cuda-runtime-api/index.html (runtime API)

<3

NVIDIA

https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/
https://devblogs.nvidia.com/even-easier-introduction-cuda/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

SRR

A A

frivs

PErfressss
FPESfETrasiss
CEAASsIesiis

FLLrEee
ey

£

e
.
n-qn

A
£Les

f

S
O

LS

Ry

’ ’
R

<A NVIDIA.

