
CUDA C/C++ BASICS

NVIDIA Corporation

What is CUDA?

CUDA Architecture

Expose GPU parallelism for general-purpose computing

Retain performance

CUDA C/C++

Based on industry-standard C/C++

Small set of extensions to enable heterogeneous programming

Straightforward APIs to manage devices, memory etc.

This session introduces CUDA C/C++

Introduction to CUDA C/C++

What will you learn in this session?

Start with vector addition

Write and launch CUDA C/C++ kernels

Manage GPU memory

Manage communication and synchronization

(Some knowledge of C programming is assumed.)

Heterogeneous Computing

▪ Terminology:

▪ Host The CPU and its memory (host memory)

▪ Device The GPU and its memory (device memory)

Host Device

Simple Processing Flow

1. Copy input data from CPU memory to GPU

memory

PCI Bus

Simple Processing Flow

1. Copy input data from CPU memory to GPU

memory

2. Load GPU program and execute,

caching data on chip for performance

PCI Bus

Simple Processing Flow

1. Copy input data from CPU memory to GPU

memory

2. Load GPU program and execute,

caching data on chip for performance

3. Copy results from GPU memory to CPU

memory

PCI Bus

Parallel Programming in CUDA C/C++

▪ GPU computing is about massive parallelism!

▪ We need an interesting example…

▪ We’ll start with vector addition

a b c

GPU Kernels: Device Code

__global__ void mykernel(void) {

}

CUDA C/C++ keyword __global__ indicates a function that:

Runs on the device

Is called from host code (can also be called from other device code)

nvcc separates source code into host and device components

Device functions (e.g. mykernel()) processed by NVIDIA compiler

Host functions (e.g. main()) processed by standard host compiler

gcc, cl.exe

GPU Kernels: Device Code

mykernel<<<1,1>>>();

Triple angle brackets mark a call to device code

Also called a “kernel launch”

We’ll return to the parameters (1,1) in a moment

That’s all that is required to execute a function on the GPU!

Memory Management

Host and device memory are separate entities

Device pointers point to GPU memory

May be passed to/from host code

May not be dereferenced in host code

Host pointers point to CPU memory

May be passed to/from device code

May not be dereferenced in device code

Simple CUDA API for handling device memory

cudaMalloc(), cudaFree(), cudaMemcpy()

Similar to the C equivalents malloc(), free(), memcpy()

Running code in parallel

GPU computing is about massive parallelism

So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< N, 1 >>>();

Instead of executing add() once, execute N times in parallel

Vector Addition on the Device

With add() running in parallel we can do vector addition

Terminology: each parallel invocation of add() is referred to as a block

The set of blocks is referred to as a grid

Each invocation can refer to its block index using blockIdx.x

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

By using blockIdx.x to index into the array, each block handles a

different index

Vector Addition on the Device

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

On the device, each block can execute in parallel:

c[0] = a[0] + b[0]; c[1] = a[1] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];

Block 0 Block 1 Block 2 Block 3

Vector Addition on the Device: add()

Returning to our parallelized add() kernel

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

Let’s take a look at main()…

Vector Addition on the Device: main()

#define N 512

int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = N * sizeof(int);

// Alloc space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c and setup input values

a = (int *)malloc(size); random_ints(a, N);

b = (int *)malloc(size); random_ints(b, N);

c = (int *)malloc(size);

Vector Addition on the Device: main()

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N blocks

add<<<N,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}

Review (1 of 2)

Difference between host and device

Host CPU

Device GPU

Using __global__ to declare a function as device code

Executes on the device

Called from the host (or possibly from other device code)

Passing parameters from host code to a device function

Review (2 of 2)

Basic device memory management
cudaMalloc()

cudaMemcpy()

cudaFree()

Launching parallel kernels

Launch N copies of add() with add<<<N,1>>>(…);

Use blockIdx.x to access block index

CUDA Threads

Terminology: a block can be split into parallel threads

Let’s change add() to use parallel threads instead of parallel blocks

We use threadIdx.x instead of blockIdx.x

Need to make one change in main():

add<<< 1, N >>>();

__global__ void add(int *a, int *b, int *c) {

c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];

}

Combining Blocks and Threads

We’ve seen parallel vector addition using:

Many blocks with one thread each

One block with many threads

Let’s adapt vector addition to use both blocks and threads

Why? We’ll come to that…

First let’s discuss data indexing…

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Indexing Arrays with Blocks and Threads

With M threads/block a unique index for each thread is given by:
int index = threadIdx.x + blockIdx.x * M;

No longer as simple as using blockIdx.x and threadIdx.x

Consider indexing an array with one element per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

Indexing Arrays: Example

Which thread will operate on the red element?

int index = threadIdx.x + blockIdx.x * M;

= 5 + 2 * 8;

= 21;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0 1 312 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M = 8

Vector Addition with Blocks and Threads

What changes need to be made in main()?

Use the built-in variable blockDim.x for threads per block

int index = threadIdx.x + blockIdx.x * blockDim.x;

Combined version of add() to use parallel threads and parallel

blocks
__global__ void add(int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index];

}

Addition with Blocks and Threads: main()

#define N (2048*2048)

#define THREADS_PER_BLOCK 512

int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = N * sizeof(int);

// Alloc space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c and setup input values

a = (int *)malloc(size); random_ints(a, N);

b = (int *)malloc(size); random_ints(b, N);

c = (int *)malloc(size);

Addition with Blocks and Threads: main()

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}

Handling Arbitrary Vector Sizes

Update the kernel launch:
add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

Typical problems are not friendly multiples of blockDim.x

Avoid accessing beyond the end of the arrays:

__global__ void add(int *a, int *b, int *c, int n) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index < n)

c[index] = a[index] + b[index];

}

Why Bother with Threads?

Threads seem unnecessary

They add a level of complexity

What do we gain?

Unlike parallel blocks, threads have mechanisms to:

Communicate

Synchronize

To look closer, we need a new example…

Review

Launching parallel kernels

Launch N copies of add() with add<<<N/M,M>>>(…);

Use blockIdx.x to access block index

Use threadIdx.x to access thread index within block

Assign elements to threads:

int index = threadIdx.x + blockIdx.x * blockDim.x;

1D Stencil

Consider applying a 1D stencil to a 1D array of elements

Each output element is the sum of input elements within a radius

If radius is 3, then each output element is the sum of 7 input

elements:

radius radius

Implementing Within a Block

Each thread processes one output element

blockDim.x elements per block

Input elements are read several times

With radius 3, each input element is read seven times

Sharing Data Between Threads

Terminology: within a block, threads share data via shared memory

Extremely fast on-chip memory, user-managed

Declare using __shared__, allocated per block

Data is not visible to threads in other blocks

Implementing With Shared Memory

Cache data in shared memory

Read (blockDim.x + 2 * radius) input elements from global memory to

shared memory

Compute blockDim.x output elements

Write blockDim.x output elements to global memory

Each block needs a halo of radius elements at each boundary

blockDim.x output elements

halo on left halo on right

__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.x;

int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];

temp[lindex + BLOCK_SIZE] =

in[gindex + BLOCK_SIZE];

}

Stencil Kernel

Stencil Kernel

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result

out[gindex] = result;

}

Data Race!

▪ The stencil example will not work…

▪ Suppose thread 15 reads the halo before thread 0 has fetched it…

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex – RADIUS = in[gindex – RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

int result = 0;

result += temp[lindex + 1];

Store at temp[18]

Load from temp[19]

Skipped, threadIdx > RADIUS

__syncthreads()

void __syncthreads();

Synchronizes all threads within a block

Used to prevent RAW / WAR / WAW hazards

All threads must reach the barrier

In conditional code, the condition must be uniform across the block

Stencil Kernel

__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.x;

int lindex = threadIdx.x + radius;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex – RADIUS] = in[gindex – RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)

__syncthreads();

Stencil Kernel

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result

out[gindex] = result;

}

Review (1 of 2)

Launching parallel threads

Launch N blocks with M threads per block with kernel<<<N,M>>>(…);

Use blockIdx.x to access block index within grid

Use threadIdx.x to access thread index within block

Allocate elements to threads:

int index = threadIdx.x + blockIdx.x * blockDim.x;

Review (2 of 2)

Use __shared__ to declare a variable/array in shared memory

Data is shared between threads in a block

Not visible to threads in other blocks

Use __syncthreads() as a barrier

Use to prevent data hazards

Further Study

An introduction to CUDA:

https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/

Another introduction to CUDA:

https://devblogs.nvidia.com/even-easier-introduction-cuda/

CUDA Programming Guide:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

CUDA Documentation:

https://docs.nvidia.com/cuda/index.html

https://docs.nvidia.com/cuda/cuda-runtime-api/index.html (runtime API)

https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/
https://devblogs.nvidia.com/even-easier-introduction-cuda/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

Questions?

