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Abstract. Two key linked questions in population dynamics are the relative importance
of noise vs. density-dependent nonlinearities and the limits on temporal predictability of
population abundance. We propose that childhood microparasitic infections, notably mea-
sles, provide an unusually suitable empirical and theoretical test bed for addressing these
issues. We base our analysis on a new mechanistic time series model for measles, the TSIR
model, which captures the mechanistic essence of epidemic dynamics. The model, and
parameter estimates based on short-term fits to prevaccination measles time series for 60
towns and cities in England and Wales, is introduced in a companion paper. Here, we
explore how well the model predicts the long-term dynamics of measles and the balance
between noise and determinism, as a function of population size. The TSIR model captures
the basic dynamical features of the long-term pattern of measles epidemics in large cities
remarkably well (based on time and frequency domain analyses). In particular, the model
illustrates the impact of secular increases in birth rates, which cause a transition from
biennial to annual dynamics. The model also captures the observed increase in epidemic
irregularity with decreasing population size and the onset of local extinction below a critical
community size. Decreased host population size is shown to be associated with an increased
impact of demographic stochasticity. The interaction between nonlinearity and noise is
explored using local Lyapunov exponents (LLE). These testify to the high level of stability
of the biennial attractor in large cities. Irregularities are due to the limit cycle evolving
with changing human birth rates and not due to complex dynamics. The geometry of the
dynamics (sign and magnitude of the LLEs across phase space) is similar in the cities and
the smaller urban areas. The qualitative difference in dynamics between small and large
host communities is that demographic and extinction–recolonization stochasticities are
much more influential in the former. The regional dynamics can therefore only be understood
in terms of a core–satellite metapopulation structure for this host–enemy system. We also
make a preliminary exploration of the model’s ability to predict the dynamic consequences
of measles vaccination.

Key words: attractor evolution; core–satellite metapopulation; epidemic birth–death process;
extinction–recolonization; nonlinear stochastic dynamics; persistence thresholds; population cycles;
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INTRODUCTION

A key issue in population dynamics is the relative
importance of low-dimensional nonlinear deterministic
forces and the, often high-dimensional, irregularities
which we label as stochasticity (May 1973, Royama
1992, Ellner and Turchin 1995, Sugihara 1995, Sten-
seth et al. 1996, Leirs et al. 1997). To tease out the
relative impact of these effects, we ideally need sys-
tems in which the impact of the low-dimensional forces
are well understood, and where the components of the
process noise, demographic stochasticity and low- or
high-frequency environmental forcing, can be separat-
ed. Demographic noise is the child of discreteness and
therefore scales with population size, so that an ideal
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system would allow us to titrate the effects of demo-
graphic uncertainty at a range of population sizes sub-
ject to the same dynamical forces. Finally, we need
both rich data sets and relatively straightforward dy-
namical descriptions of them in order to integrate ob-
servations and models properly. Here we build on the
model and parameter estimates of our previous paper
(Bjørnstad et al. 2002) to propose that the dynamics of
childhood infections, notably measles, in developed
countries provide one of the best available test beds
for exploring these issues. Specifically, we explore how
the long-term dynamics of measles epidemics depends
on the balance between nonlinear epidemic forces, de-
mographic noise, and environmental forcing, and how
these dependencies scale with host population size.

The balance between noise and determinism is in-
timately linked to another key issue: the level of pre-
dictability of ecological systems. Establishing the lim-
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its to quantitative dynamical prediction, set by sto-
chastic uncertainties or deterministically chaotic forc-
es, can teach us about a system’s dynamics, and reveal
the temporal scale at which forecasting is reliable (Su-
gihara et al. 1990, Sugihara and May 1990, Tong 1990,
Ellner and Turchin 1995). Qualitative predictive abil-
ity, the presence or absence of oscillations, for ex-
ample, is also an important test of models; especially
when this refines our understanding of underlying bi-
ological mechanisms. A particularly hard test of models
is provided by a characteristic feature of many eco-
logical time series: transitions between different dy-
namical behaviors through time or space (e.g., Mur-
doch and McCauley 1985, Stokes et al. 1988, Stenseth
et al. 1996, Bjørnstad et al. 1998, Finkenstädt and Gren-
fell 1998). Teasing out whether these changes arise
from internal dynamics (such as intermittent period-
icity associated with chaos; Kendall et al. 1993, Schaf-
fer et al. 1993), or secular changes in important pa-
rameters (such as transitions in vital rates; Stokes et
al. 1988, Finkenstädt and Grenfell 1998) is a key task
for population dynamics (Sugihara 1995). Mechanistic
and semimechanistic models (Ellner et al. 1998) are
particularly powerful here, if they can allow for the
consequences of known changes in the system’s pa-
rameters (Finkenstädt and Grenfell 2000). This form
of prediction can have an important applied dimension
since such shifts are often directly or indirectly an-
thropogenic in origin; relating, for example, to the ef-
fects of global warming (Fan et al. 1998) or vaccination
(Anderson and May 1991).

Validation of predictive models requires data against
which to test assumptions and predictions. Since the
results of large-scale experimental manipulations at the
population level are generally not available to ecolo-
gists, a common strategy is to fall back on ‘‘postdic-
tion’’ of historical time series. Childhood infections,
notably measles, provide a paradigm for this form of
prediction (Sugihara et al. 1990, Tidd et al. 1993, Gren-
fell et al. 1994, 1995, Ellner 2000, Finkenstädt and
Grenfell 2000, Grenfell 2000; Finkenstädt et al. 2002).
Pre- and postvaccination measles notification data sets
are extensive (Grenfell and Harwood 1997) and there
is a firm theoretical understanding of both the deter-
ministic (Anderson and May 1991) and stochastic
(Bartlett 1956) underpinnings of measles epidemics.

We use the time series SIR (TSIR; Time series Sus-
ceptible–Infected–Recovered) models to bridge the gap
between epidemiological data and models. In the com-
panion paper (Bjørnstad et al. 2002), we develop the
model, estimate its parameters, and study how the pa-
rameter estimates scale with host population size. In
this paper, we focus mainly on the long-term dynamics
of measles. We first show how the TSIR model suc-
cessfully represents the typically observed biennial
predator–prey like alternation of infected and suscep-
tible individuals; the cycle is maintained by a season-
ally varying infection rate (Schenzle 1984). We sub-

sequently use the model to understand how stochastic-
ity, virus transmission, and secular changes in birth
rates interact to modulate the epidemic dynamics. The
model captures the essential features of comparative
long-term prevaccination dynamics of measles, across
a range of cities in England and Wales, spanning three
orders of magnitude in size. For large cities, where
measles is endemic, seasonal variations in contact rate
and longer-term variations in birth rate are sufficient
to describe these dynamics. In smaller centers, below
a critical community size (CCS) of ;300 000–500 000
(Bartlett 1960), demographic stochasticity and extinc-
tion/recolonization become increasingly important. De-
creasing host population size thus induces two critical
transitions: (1) local dynamics changes from regular
and predictable cycles to more stochastic outbreaks and
(2) persistence changes from a local level to the me-
tapopulation level. We reach these broad conclusions
by addressing the following more specific issues:

1) How predictable is the, generally biennial, alter-
nation of major and minor epidemics in large cities in
the prevaccine era, and what is the impact of long-term
trends in birth rate on these patterns?

2) How does predictability change with the pro-
gression from regular endemic disease oscillations in
large cities above the CCS (Bartlett’s [1960] type I
dynamics), through regular epidemics with intervening
fadeouts in smaller urban centers (type II dynamics),
to more irregular (type III) dynamics in still smaller
centers?

3) How does the importance of stochasticity scale
with population size? And, how does the interaction
between ‘‘noise’’ and nonlinear regulation determine
the transition from regular endemic cycles in large cit-
ies, to episodic epidemics in small towns? We approach
this through a combined discussion of local Lyapunov
exponents (LLE; Bailey et al. 1997) and stochastic
forcing.

In the Results section, we focus mainly on using the
TSIR model to titrate the relative impact on measles
dynamics of stochastic and deterministic forces and the
resulting implications for qualitative and quantitative
dynamic predictability. In the Discussion, we explore
the wider ecological implications of this methodology
and its application.

MATERIALS AND METHODS

The data

We use official weekly notification data for measles,
and associated demographic data, for 60 towns and
cities in England and Wales between 1944 and 1994;
a full description of the structure and limitations of the
data set is given by Bjørnstad et al. (2002). We focus
mainly on the prevaccination era (1944–1966). The raw
data for the 60 cities—the biweekly incidences of mea-
sles and the annual data on human birth rates—are
available online from the Department of Zoology at
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FIG. 1. (A) Measles incidence in 2-wk periods (in hundreds) in London from 1944 to 1965. The circles and the red line
represent observed incidence (corrected for underreporting). The blue line represents the deterministic prediction from the
TSIR model (using the susceptible and infected density in the first 2-wk period of 1944 as initial conditions). The black
lines (and inverted scale) represent five stochastic realizations of the TSIR model. (B) The biweekly number of births (in
hundreds) in London. The numbers are averaged within each year. The post-World War II baby boom in the late 1940s is
associated with a period of annual cycles in measles incidence.

Cambridge University.5 Figs. 1 and 2 show epidemic
trajectories for 12 representative cities spanning the
range from the largest (London, 3.3 3 106 people) to
the smallest (Teignmouth, 10 500 people) host com-
munities. Bartlett (1960) classified the fluctuations in
measles incidence as type I dynamics (regular endemic
oscillations in large cities, above ;250 000 inhabi-
tants), type II dynamics (regular epidemics with inter-
vening fadeouts in smaller urban centers), and type III
dynamics (irregular outbreaks with long fadeout peri-
ods in small towns and villages). Fig. 2 is arranged
such that rows one through three represent type I
through III dynamics, respectively. Bjørnstad et al.
(2002: Fig. 2) illustrate how the transition in type of
dynamics is associated with increasing frequency of
local extinction: type I cities never (or only extremely
rarely) exhibit local extinctions while type III cities
may exhibit measles extinction a third of the time (or
more). A preliminary analysis of the pattern of local
extinctions in the full England and Wales measles da-
tabase (1400 locations) indicates a smooth transition
from type II to type III in the length and frequency of
local extinctions (Grenfell and Bolker 1998). Note
therefore that the above choice of type II and III cities
is relatively subjective, however it does illustrate the
observed change in dynamics with population size, for
comparison with the model.

5 URL: ^http://www.zoo.cam.ac.uk/zoostaff/grenfell/measles.
htm&

The TSIR model

This is a discrete-time nonlinear stochastic analogue
of the well-known SIR (Susceptible–Infected–Recov-
ered) model (Dietz and Schenzle 1985, Anderson and
May 1991, Finkenstädt and Grenfell 2000, Bjørnstad
et al. 2002). It is also closely related to the chain bi-
nomial model (e.g., Bailey 1957; see Discussion in
Bjørnstad et al. 2002). The model thus builds on both
the distinguished literatures of theoretical and statis-
tical epidemiology. The characteristic time scale of the
chain is 2 wk (corresponding roughly to the sum of
incubation and infectious periods for the infection; An-
derson and May 1991). We denote the number of res-
ident infectious host at time t (t 5 1, . . . , T) by It, and
the number of epidemic imports (immigrant infections)
by ut. The force of infection, the infection pressure
experienced by one susceptible individual, can then be
expressed as bs(It 1 ut)a, where bs is the per capita
transmission rate; a allows for nonlinearities in contact
rates (Liu et al. 1987; see also Discussion). The ex-
pected number of cases in the next time step (the ep-
idemic intensity) is then assumed to be

al 5 b (I 1 u ) St11 s t t t (1)

where St is the number of susceptible hosts. In the
companion paper (Bjørnstad et al. 2002), we discuss
all the estimated parameters, and their associated un-
certainty, in detail. A crude summary of the results are
as follows: the per capita transmission rate varies sea-
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FIG. 2. Measles incidence (in hundreds) in 12 representative cities/towns spanning the population range from large cities
(London, 3.3 3 106) to small urban areas (Teignmouth, 10 500 inhabitants) in the United Kingdom from 1944 to 1965. Circles
and red line represents observed incidence (corrected for underreporting). The black dots along the abscissa represent 2-wk
periods of local extinction. The blue line represents the deterministic prediction from the TSIR model. The black lines (and
inverted scale) represent five stochastic realizations of the TSIR model (cf. Fig. 1 legend). For two of the cities (Leeds and
Newcastle) we have highlighted (in red) stochastic trajectories that have jumped onto the even-year attractor. The top row
comprises four large cities that represent type I cities (sensu Bartlett 1960) with endemic cycles. The second row represents
four type II cities that exhibit regular epidemics interspersed by short fadeout periods. The bottom row depicts the irregular
epidemics of four different type III cities.

sonally because of school-term forcing (the realized
per capita transmission rate is higher during school
term than during school holidays). Fig. 3a depicts the
seasonal transmission rate, as estimated on the basis of
the measles data for London (see Fig. 1). Over and
above the seasonal variation, however, the mean per
capita transmission rate is inversely proportional to
host community size (see Bjørnstad et al. 2002: Fig.
7a and Eq. 6). This essentially corresponds to fre-
quency-dependent transmission (or ‘‘true mass action’’
sensu de Jong et al. 1995, McCallum et al. 2001). The
mixing coefficient, a, is shown to vary somewhat, but
it is nearly independent of host community size and
very close to unity (Bjørnstad et al. 2002: Fig. 6); in-
dicating approximate homogenous mixing. Note,
though, that analyses presented by Finkenstädt and
Grenfell (2000) suggest that a is typically slightly low-
er than unity (see also Finkenstädt et al. 2002).

Another key stochastic process is the transfer of in-
fection between towns. The TSIR model uses, as a first
approximation, the assumption that the influx rate of
infection, ut, follows a Poisson process with time-in-
variant mean m:

u ; Poisson(m)t (2)

where ‘‘;’’ is shorthand for ‘‘is distributed as.’’ Fol-
lowing detailed analysis under the assumption of ti-
meinvariance, uncertainty in the estimation of u still
prevails. We will, nevertheless, (but tentatively) use
the estimates presented in the companion paper
(Bjørnstad et al. 2002) for further analysis. This anal-
ysis indicates that m increases with city size, but slower
than linearly (as conjectured by Bartlett 1966).

Eq. 1 follows directly from the extensive theoretical
literature on childhood-disease dynamic modeling (see
reviews in Anderson and May 1991, Grenfell and Dob-
son 1995, Mollison 1995). In order to make a com-
prehensive model for measles dynamics, we also need
to consider the demographic stochasticity inherent
from births and deaths in any ecological system (Ken-
dall 1949, Bartlett 1956, see also Renshaw 1991). In
the absence of such variation, the number of new cases,
I, would be identical to the epidemic intensity, l, ac-
cording to

I 5 l .t11 t11 (3a)
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FIG. 3. The effect of seasonal variation on measles dy-
namics. (A) The bold line signifies the seasonal cycle in log-
transmission rate, Log(b), in London (see Bjørnstad et al.
2002: Fig. 7). The estimated coefficient of variation (CV) in
b is 0.20. The variation is caused by term-time aggregation
of school children and age-structured heterogeneities (see
also Earn et al. 2000). The superimposed lines represent anal-
ogous seasonal cycles corresponding to a seasonal CV of 0
(i.e., no seasonal forcing), 0.1, 0.3, 0.4, and 0.5. (B) The
bifurcation diagram of measles incidence against CV(b). In
order to highlight multiannual fluctuations, incidences are
summed across individual years; single lines, thus, represent
an annual cycle, the two branches represent the biennial cycle,
etc. The bifurcation plot spans 200 yr (5 5200 generations)
after a transient period of 10 yr. The annual cycle bifurcates
into a biennial cycle at CV(b) 5 0.1, which further bifurcates
at CV(b) 5 0.3. The vertical line represents the seasonal CV

observed in London. (C) The Lyapunov exponent of the skel-
eton TSIR model against annual CV(b) as estimated from the
time series in (B). Measles dynamics are predicted to go
chaotic as the CV exceeds 35%.

We will refer to Eq. 1 and Eq. 3a as the deterministic
skeleton formulation.

In the presence of demographic stochasticity, how-
ever, the dynamics will not be realized according to the
deterministic skeleton. Using the locally constant ap-
proximation to the nonlinear birth–death process
(Bjørnstad et al. 2002), the number of infected indi-
viduals after one characteristic time unit (;2 wk for
measles) will be realized according to

I ; NB(l , I )t11 t11 t (3b)

where NB(a, b) signifies a negative binomial distri-
bution, with expectation a and clumping parameter b.
We will refer to Eqs. 1, 2, and 3b as the (doubly)
stochastic formulation. Note that {It} is now a sequence
of discrete integer variables, in contrast to the contin-
uous epidemic intensity of the deterministic formula-
tion.

There are two additional issues we need to address:
susceptible replenishment and environmental forcing
on the susceptible dynamics due to secular changes in
the vital rates of the human host (Finkenstädt and Gren-
fell 1998, 2000, Finkenstädt et al. 1998, 2002). Both
of these can be incorporated in a simple balance equa-
tion for the susceptibles:

S 5 S 1 B 2 It11 t t t11 (4)

where Bt represents the number of births. The annual
per capita birth rates of humans ranges from ;0.01 to
0.02 in Britain in the decades following World War II
(Office of Population Censuses and Surveys; OPCS).
The birth rates, however, vary geographically (Liver-
pool, for instance, has relatively high rates) and tem-
porally (the post-World War II baby boom resulted from
a 30% increase in birth rates as compared to prior and
posterior periods; Finkenstädt and Grenfell 1998). We
will refer to Eqs. 1–4 as the TSIR model. Full details
on the parameter estimation are given in Bjørnstad et
al. (2001).

In summary, we note that Eqs. 1–3 predict the mean
infection intensity for the next time step (lt11) as a
function of (1) the numbers of current infective and
susceptible individuals (It and St, respectively), modi-
fied by the ‘‘mixing exponent’’ (a) which allows for
nonlinearities in transmission; (2) seasonal variations
in transmission, bs (Fig. 3a); (3) a Poisson-distributed
influx of infection from other places, ut; and (4) the
susceptible balance equation, wherein the number of
host births may vary through time.

Dynamics

In order to understand the dynamics of measles
across the range of host community sizes, we analyze
both the deterministic skeleton of the TSIR model and
the full stochastic dynamics. The former situation is
given by Eqs. 1, 2, 3a, and 4; in this case we either
(for cities above CCS) assume the stochastic influx, ut,
to be negligible (i.e., ut 5 0 for all t) or take the influx
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to be a time-invariant constant (ut 5 m . 0 for all t).
The latter stochastic dynamics are defined by the dou-
bly stochastic model given by Eqs. 1, 2, 3b, and 4.

We can use the estimates of the susceptible and in-
fected density in the first 2-wk period of 1944 (S0, I0)
as initial conditions for simulations. The latter is di-
rectly reported but has to be calibrated for underre-
porting (Finkenstädt and Grenfell 2000). The former is
estimated from susceptible reconstruction (Finkenstädt
and Grenfell 2000, Bjørnstad et al. 2002). Given the
city-specific epidemiological parameters (Bjørnstad et
al. 2002), we then study the sequence of subsequent
measles epidemics, either deterministically or stochas-
tically. Unless otherwise stated, all simulations use the
city- and time-specific birth rates. We use repeated
Monte Carlo simulations of the model and compare the
results with the data. Unless otherwise stated, the sto-
chastic behavior is a summary across 10 000 realiza-
tions of each model (all starting from the observed
initial conditions). In particular, we focus on how well
the (1) simulated trajectories, (2) spectral densities, and
(3) critical community size and fadeout lengths match
the observations. We further analyze how community
size affects the rate of stochastic divergence in epi-
demic trajectories. We use the periodogram on square-
root transformed case counts to estimate the spectral
densities (Priestley 1982).

Lyapunov exponent, control parameters,
and bifurcation

In order to explore the short-term predictability of
measles, and the interaction between stochastic and
regulatory forces on measles dynamics, it will be useful
to consider the sensitivity of the dynamics to small
differences in initial conditions (such as those that may
arise from demographic stochasticity). This sensitivity
is commonly quantified by the dominant Lyapunov ex-
ponent. There are a number of important conceptual
and methodological issues pertaining to this measure
as applied to stochastic systems (Bailey et al. 1997,
Tong 1997). We measure the dominant Lyapunov ex-
ponent (LE) of the deterministic skeletons by using the
Jacobian method as developed by Bailey et al. (1997;
see also Eckmann et al. 1986). That is, we define the
finite time LE as follows:

T1
LE 5 log J U (5)P t 01 2( (T t51

where P represents matrix premultiplication, \ · \ rep-
resents the vector norm, and U0 is a unit length vector.
We use U0 5 ( ) (see Bailey et al. 1997). The matrix1

0

Jt is the Jacobian of the deterministic skeleton of the
epidemic model

a21 aab S (I 1 u ) b (I 1 u )s t t t s t tJ 5 . (6)t a21 a1 22ab S (I 1 u ) 1 2 b (I 1 u )s t t t s t t

As a crude measure of the dominant (global) Lyapunov

exponent, we calculate LE on the basis of 100 yr (2600
iterations of the model) after discarding the first 2600
iterations. There are two control parameters that are
important in our study: first, the amount of seasonality
(as measured, for example, by the coefficient of vari-
ation of b across the annual cycle), and, second, the
rate of susceptible replenishment (i.e., the birth rate,
B). Fig. 3b and c illustrate how the seasonality in b
controls the stability of the skeleton; as seasonal var-
iation increases, the dynamics undergo a transition in
dynamics from an annual cycle, through a biennial cy-
cle to multiannual oscillations and chaos for high de-
grees of seasonality. The parameter estimates presented
in the companion paper testify that London measles
resided in the biennial part of parameter space during
the prevaccination era. Finkenstädt and Grenfell (2000)
and Earn et al. (2000) discuss the effect of birth rates
on measles dynamics and show that increased rates
result in a collapse of the biennial attractor onto an
annual cycle. In contrast, decreased birth rates result
in complex coexisting attractors in the seasonally
forced SEIR (Susceptible–Exposed–Infectious–Recov-
ered) model (Earn et al. 2000). This appears also to be
the case for the TSIR model, albeit only for values of
a close to 1 (K. Glass and B. Grenfell, unpublished
manuscript).

In order to dissect the interaction between noise and
nonlinear regulation we need to understand how the
relative noise level changes during the epidemic. In the
companion paper (Bjørnstad et al. 2002), we show that
the birth–death process results in a coefficient of var-
iation in the dynamics that changes through the cycle
according to: CV(t) ø . We will use the one-step-Ï2/It

ahead local Lyapunov exponent, LLE, to understand
how this demographic stochasticity is amplified or re-
duced through the epidemic cycle. We follow Ellner et
al. (1998) and Bailey et al. (1997), and study the one-
step-ahead LLE evaluated at each point along the ep-
idemic trajectory.

Noise-induced divergence may be particularly rapid
in the presence of coexisting attractors because ran-
domness may shift a population from one attractor onto
another (e.g., Earn et al. 2000). In the face of an annual
cycle, there is just a single attractor. In contrast, the
biennial regime exhibits two coexisting attractors that
differ only with respect to whether the major peak falls
in the odd or the even year (see Henson et al. 1998 for
a related discussion). In the Discussion, we consider
the TSIR model’s depiction of more complex coexist-
ing attractor structures for measles.

RESULTS

Measles dynamics in big cities

We begin by considering what the TSIR models tell
us about the balance between noise and determinism
in large centers, as epitomized by London. Fig. 1a
shows observed prevaccination dynamics in London
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FIG. 4. Power spectra (in hundreds) of measles for the 12 representative cities/towns (cf. Fig. 2) in the United Kingdom
from 1944 to 1965. The circles and the red lines represent the power spectra of the observed incidence (corrected for
underreporting). The black line represents the spectrum of the deterministic prediction from the TSIR model. The gray
envelopes represent 95% envelopes across 10 000 stochastic realizations of the TSIR model.

(1944–1966), corrected for underreporting (Finken-
städt and Grenfell 2000). Superimposed on the ob-
served case counts are simulations of the deterministic
skeleton (hereafter deterministic) TSIR model and five
replicate simulations of the stochastic model allowing
for demographic noise (for clarity, the latter are plotted
on an inverted scale). A number of key results emerge
from simple visual inspection of this figure.

1. Predictable major epidemics.—Measles inci-
dence exhibit conspicuous fluctuations that have both
an annual and a biennial component (Finkenstädt and
Grenfell 2000). In London, the annual component is
more dominant in the early part of the series, whereas
the biennial component predominates the second half
(see next paragraph). As reviewed above, these cycles
arise from the interaction of time-delayed density-de-
pendent epidemic dynamics, ‘‘forced’’ by the external
seasonal driver of school terms. The figure spans 21
yr of data, which represents ;550 ‘‘measles genera-
tions.’’ The visual correspondence between the data
and the model prediction is encouraging; the correla-
tion between the data and the deterministic ‘‘postdic-
tion’’ (on variance-stabilized, square-root-transformed

data) is 0.84 over the 20 yr. (Recall also that the one-
step-ahead fit of the model to the data, essentially 2-
wk-ahead predictions, was 0.98; Bjørnstad et al. 2002).
Note, though, that the simulation does not represent
true out-of-sample prediction (we return to this in the
Discussion).

2. Dynamic transitions.—In addition to capturing
the overall trajectory of the epidemic, the TSIR sim-
ulations also closely match the clear transition in mea-
sles dynamics—from relatively low amplitude annual
epidemics in the 1940s, to large, predominantly bien-
nial, outbreaks from ;1950. This transition has been
studied in detail (Finkenstädt and Grenfell 1998, 2000,
Finkenstädt et al. 1998, Earn et al. 2000). The current
understanding is that the baby boom in the second half
of the 1940s increased the production of susceptibles
(Fig. 1b) to the extent that the dynamics collapsed onto
an annual attractor. This collapse was released as birth
rates dropped in the early 1950s.

3. Impact of demographic noise.—The forecasting
for London measles incidence is largely unaffected by
including the demographic stochasticity inherent in the
epidemic process (Fig. 1a). The mean correlation be-
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FIG. 5. The proportion of the total variation captured by the 2-yr peak of the power spectra (see Fig. 4) plotted against
community size (logarithmic axis). The power of the 2-yr peak is summed across the frequencies 0.018 and 0.020 (corre-
sponding to 2.1- and 1.9-yr periods). Red circles represent the observed proportions; black crosses represent the predicted
proportions from the stochastic TSIR model (mean across 10 000 realizations). Liverpool (and its dominance of annual
fluctuations) is highlighted in green. The full red line is the logistic regression of observed proportions against log community
size (F1,58 5 13.7, P , 0.01). The full black line is the corresponding logistic regression for predicted proportions (F1,58 5
37.1, P , 0.01). Dotted lines are logistic regressions after omitting Liverpool.

tween the data and the stochastic ‘‘postdiction’’ (using
variance stabilized, square-root-transformed data) is
0.83, while that between the deterministic and the sto-
chastic trajectories is 0.98. The absence of stochastic
divergence is further testified to by the close corre-
spondence between the different stochastic trajectories
(the mean correlation between them is 0.97). Note,
however, that the simulations in Fig. 1a are not iden-
tical—there is variation, especially at major and minor
epidemic peaks.

One reason for the absence of stochastic divergence
is the scaling of demographic noise with host com-
munity size (one disease-generation ahead CV ø

). For London, the largest city in the the UnitedÏ2/It

Kingdom, this scaling results in a mean CV of 3.9%.
The CV is largest in the troughs, where it rises as high
as 14.4% (the incidence rarely drops below 100 indi-
viduals in the prevaccination era). However, across
most of the cycle the demographic noise is negligible
(CV . 10% for a mere 4.3% of the time). The short-
term (2-wk period to 2-wk period) effect of demo-
graphic stochasticity is therefore relatively weak. How-
ever, as we shall discuss in more detail later, this scaling
of demographic noise is not the full story. In a linear
stochastic system, even weak noise would be com-
pounded through time to cause complete stochastic di-
vergence, since such dynamics are ‘‘phase-forgetting’’
(sensu Nisbet and Gurney 1982). In order to understand
the predictability of the current system, we also need

to study the nonlinear (density-dependent) amplifica-
tion/reduction of noise through the epidemic cycle.

Overall, however, the TSIR model ‘‘postdicts’’ the
London data remarkably well for an ecological model
of a microparasite ‘‘in the wild.’’ We now turn to how
this fit between theory and data scales with host abun-
dance (i.e., human community size).

Measles dynamics and population size:
historical trajectories

In Fig. 2 we extend the London analysis (Fig. 1) to
12 representative urban areas. The top row comprises
four of the largest cities in the England and Wales
(again including London). These are all type I cities
(sensu Bartlett 1960) that exhibit endemic cycles. The
second row represents a selection of type II cities that
exhibit regular epidemics interspersed by short fadeout
periods. The last row depict the irregular epidemics of
type III cities. The simulated series capture qualita-
tively the major epidemic dynamics across time over
the range of population sizes. A visual inspection, how-
ever, reveals a number of interesting features about the
dynamics (most of which we will return to in the par-
agraphs following this initial inspection) of the three
types of cities:

1) Type I cities (Fig. 2, top row) exhibit dynamics
that are quantitatively well predicted by both deter-
ministic and stochastic simulations; measles is pre-
dicted to be endemic, and both the biennial dynamics



May 2002 193SCALING OF MEASLES DYNAMICS

of Birmingham and Leeds and the annual fluctuations
in Liverpool are captured by the model. Note, however,
how one of the stochastic realizations for Leeds is lock-
ing onto the even-year attractor and thus drifting per-
fectly out of synchrony with the other (odd-year) tra-
jectories.

2) Type II cities (Fig. 2, row 2) are predicted to
exhibit fairly regular epidemic cycles, interspersed by
short fadeout periods. The four cities depicted are ob-
served (compared to corresponding stochastic predic-
tion 6 1 SD) to have measles extinction 2.3% (3.1%
6 0.5%), 6.7% (5.5% 6 2.3%), 6.2% (2.3% 6 1.5%),
and 13.1% (15.5% 6 5.3%) of the time, respectively.
We will return to the pattern of extinction below. Fur-
thermore, they exhibit intermediate scale predictability,
in that the first 10 yr (i.e., 250 generations) are well
predicted, but stochastic divergence is apparent there-
after. The deterministic models generally exhibit dy-
namics qualitatively similar to the observed dynamics
and to those of the stochastic realizations.

3) Type III cities (Fig. 2, row 3) are predicted by
the stochastic model to exhibit erratic epidemic out-
breaks, interspersed by long periods of extinction. The
four cities are observed (stochastic prediction 6 1 SD)
to have measles extinction 18.6% (13.3% 6 4.8%),
29.3% (19.3% 6 6.2%), 33.7% (30.1% 6 6.5%), and
60.9% (39.4% 6 3.3%) of the time. Stochastic diver-
gence is predicted to be fast. Overall, the amplitude
and frequency of outbreaks appear to be reflected in
the stochastic realizations. In contrast to the larger cit-
ies, the deterministic models fails qualitatively to pre-
dict the dynamics; deterministic models all predict
measles in type III cities to have low incidence of mea-
sles with erratic annual variation. Note that the failure
to capture the dynamics is despite the fact that the R2

of the model of the short-term dynamics (measured as
1 2 [residual deviance/null deviance]) are .73% in all
models (Bjørnstad et al. 2002). Thus, short-term (bi-
weekly) prediction works relatively well for small
towns, whereas longer-term prediction is compromised
by instability arising from stochasticity. This instability
arises from a combination of demographic uncertainty
(which permits local extinction of infection) and the
stochastic nature of immigration (which generates var-
iation in the waiting time before reintroduction of in-
fection).

Measles dynamics and population size:
power spectra

We can make quantitative comparisons of observed
and simulated dynamics by spectral analysis. Fig. 4
shows the power spectra of observed incidence for the
12 sample cities of Fig. 2. The power spectra were
calculated using the periodogram (smoothed by a Dan-
iel window of width 3; Priestley 1982). Superimposed
on the power spectra are the deterministic and sto-
chastic spectra that are predicted by the TSIR model.
As evident also from the time trajectories (Fig. 2), most

of the observed spectra (black) show strong variation
at annual and biennial periods, with a dominant bien-
nial peak in power. There are two exceptions. First,
Liverpool shows much stronger annual variation. Sec-
ond, the smallest town, Teignmouth, shows a much
wider spread of power around the 2-yr peak.

The spectra of the deterministic TSIR model are in
very good agreement with the real data for large (Type
I, Fig. 4, top row) and intermediate-size (Type II, Fig.
4, middle row) host communities. Note, for example,
how the predominantly annual dynamics of Liverpool
are predicted. Intriguingly, the deterministic modeling
fails miserably for small (Type III, Fig. 4, bottom row)
cities for which demographic stochasticity and extinc-
tion/recolonization dynamics are important.

The stochastic simulations highlight further impor-
tant features of both the model and the dynamics (Fig.
4). First, the simulations broadly capture the observed
balance between annual and biennial cycles, including
the conspicuous behavior of Liverpool and Teign-
mouth. Second, as population size declines, the en-
velopes widen considerably. London (and other large
cities) tends to show very similar replicate stochastic
simulations (Fig. 2). The cyclic behavior become
steadily more variable, both within and between sim-
ulations as population declines, as reflected in the wid-
ening frequency envelopes. Third, the fully stochastic
model can capture the periodic component of the dy-
namics well, even in the smallest cities. Hence, the
temporal patterns of fluctuations can be predicted even
in small host communities where both birth–death and
extinction–recolonization stochasticities are dominant.
It is the exact timing and size of outbreaks that are
nonpredictable.

Predictability: periodicity and city size

Measles dynamics show predominantly biennial cy-
cles in most cities (except Liverpool). However, the
dominance of this clockwork appears to depend on host
community size. To summarize this across the full 60-
city data set, we calculate the proportion of the variance
that is accounted for by the 2-yr peak of the spectrum
(Fig. 5). The proportion is found to increase signifi-
cantly with community size, from ;10% for the small-
est cities to ;40% for the biggest (logistic regression
of proportion against log[size]: F1,58 5 13.7, P , 0.01).
The proportion predicted by stochastic simulations is
found to vary in a similar fashion (Fig. 5; logistic re-
gression of proportion against log[size]: F1,58 5 37.1,
P , 0.01). There is a fair amount of variation between
predicted and observed proportions (R 5 0.50, P .
0.01). Despite this, their relationships to community
size are very similar (Fig. 5). Further analyses, based
on the more regularly biennial series post-1952 (not
shown), reveal a similar, but stronger, relationship be-
tween bienniality and community size.

The deterministic predictions of biennial power-ratio
work well (and match the stochastic results) for the
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FIG. 6. (A) Stochastic divergence, measured as the cor-
relation between replicate realizations of the TSIR model,
plotted against community size (logarithmic axis). Black
crosses represent the mean across the stochastic realizations
of each model. The black line is the logistic regression of
mean correlation against log(community size) (F1,58 5 104.4,
P , 0.01). (B) Fadeout proportion (percentage of time mea-
sles is locally extinct) plotted against community size (log-
arithmic axis). Red circles represent the observed proportion.
The full red line is the logistic regression of observed pro-
portions against log(community size) (F1,58 5 410.6, P ,
0.01). Black crosses represent predicted proportions from the
stochastic TSIR model (mean across 10 000 realizations). The
full black line is the corresponding logistic regression for
predicted proportions (F1,58 5 120.9, P , 0.01). (C) Predicted
median fadeout length (based on 10 000 stochastic realiza-

←

tions) plotted against the median observed in the time series.
The diagonal line represents unbiased predictions.

largest (type I) cities. However, for the remaining cities
the deterministic predictions are much less accurate
than the stochastic ones. For medium-sized (type II)
towns, the deterministic model tends to overestimate
the proportion of biennial power. This is probably be-
cause of a lack of noise at other frequencies in the
simulations, compared to the real epidemics—recall
that we do not allow in the simulations for measurement
error, or for temporal fluctuations in parameters cor-
responding to ‘‘environmental’’ noise. For small (type
III) centers, deterministic models fail to reproduce the
power ratio as they predict annual small-amplitude cy-
cles (Fig. 4).

Predictability: stochastic divergence and city size

We can use the TSIR model to study the impact of
stochasticity on the measles attractor by looking at the
extent to which replicate simulations diverge. Fig. 6a
summarizes this effect by plotting the mean correlation
among trajectories for each of the 60 cities. The results
nicely complement those found through the analyses
of power spectra; individual trajectories are almost per-
fectly correlated for large (type I) cities and the cor-
relation falls to almost zero for small (type III) pop-
ulations (,100 000). This provides a synoptic illustra-
tion of the increasing impact of demographic and ex-
tinction–recolonisation stochasticity at low population
sizes.

Demographic stochasticity manifests itself through
increasing the coefficient of variation of the epidemic
birth–death process. An important result of this is local
extinction in small populations. Fig. 6b displays the
observed proportion of time when measles is locally
extinct, compared to the prediction of the doubly sto-
chastic TSIR model. The decline with log(population
size) observed in the data is closely matched by the
simulated series. The other standard measure of local
measles persistence is the incidence of local fadeouts
of infection (Bartlett 1960). To allow for spurious zeros
due to under-reporting in the data, we defined a fadeout
as 3 or more weeks without reported cases. The ob-
served and expected median length of fadeouts are also
closely matched between real and simulated series (Fig.
6c).

Nonlinearity and predictability

We cannot fully understand the dynamics of measles
by considering the deterministic and stochastic com-
ponents separately; demographic stochasticity in a lin-
ear system would be predicted to push trajectories out
of phase even for the largest cities. In order to under-
stand the interaction between the two components we
calculate the local Lyapunov exponents (LLEs), be-
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FIG. 7. (A) Local Lyapunov exponents across the biennial attractor predicted for median birth rates in London. Filled
circles represent positive values; open circles represent negative values. The area of the circle is proportional to the absolute
value of the local LEs (LLEs). The dominant (global) LE is 20.03, despite more than half of the attractor exhibiting positive
LLEs (range: 20.21–0.51). (B) LLEs across the observed trajectory of London (1944–1965; see Fig. 1). The median LLE
is 20.05 (range: 20.66–0.54). (C) The one-step-ahead coefficient of variation in the nonlinear birth–death process across
the attractor depicted in (A). The area of the circle is proportional to the CV. The median CV is 7.3% (range: 1.2–19.6%).
(D) The one-step-ahead CV across the observed trajectory of London. The median CV is 4.5% (range: 1.1–32.4%).

cause these allow us to ask how random forces are
amplified or decreased across the epidemic cycle. Su-
perimposing the LLEs on the state space representation
of the theoretical biennial cycle (Fig. 7a), reveals a
complex pattern of noise modulation in measles dy-
namics. The LLEs are positive during much of the
trough phase and the whole of the increase phase of
the epidemic. That means that stochastic forces acting
during this part of the cycle are, in the short-term,
amplified rather than reduced. In contrast, the decrease
phase exhibits negative LLEs and hence strong regu-
lation, whereby dynamic noise is quickly reduced in
the chain of transmission. The full skeleton, intrigu-
ingly, exhibits global contraction (the global Lyapunov
exponent is approximately 20.03), even though the
proportion of the attractor exhibiting amplification is
slightly larger than that exhibiting contraction (Fig. 7a).

With some hesitation, we can repeat the same ex-
ercise for the observed trajectory for London. (We need
to be careful, because all current understanding, in-
cluding the present results, indicates that the dynamics
of measles in the United Kingdom post-World War II
are governed by an attractor that evolves in response
to changes in host vital rates). The resultant picture is
qualitatively similar to that seen in the idealized bi-
ennial attractor. The contraction during the decline

phase overcomes the accumulated amplification during
the other phases (Fig. 7b).

To complete this exploration of nonlinear predict-
ability, we need to consider how the inherent stochas-
ticity changes across the attractor. Fig. 7c and d depict
the magnitude of the demographic stochasticity across
phase space for the biennial attractor and the evolving
London attractor, respectively. The coefficient of var-
iation is high in the epidemic troughs and declines
quickly during epidemic peaks. Note that the decline
phase in measles, thus, exhibits both low stochastic
forcing and negative LLEs, a very powerful combi-
nation that induces tight ‘‘shrinkage’’ of any stochastic
excursions onto the attractor.

DISCUSSION

As reviewed in the companion paper (Bjørnstad et
al. 2002), measles has played a key role both in pure
and applied population dynamics and statistical ecol-
ogy, as well as in the recent flowering of dynamical
systems approaches to ecological time series. Bjørnstad
et al. (2002) presented a mechanistic modeling frame-
work that unifies these approaches, focusing on how
key epidemiological parameters and processes scale
with host population size. Here, we have applied the
model to investigate a potentially much more difficult
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problem—the scaling of long-term dynamics. We
aimed to address three questions: first, how well the
model captures the dynamics of measles in large cities;
second, how do the dynamics and noise scale with pop-
ulation size; third, what is the role of the interaction
between noise and regulation in forming the system’s
predictability. We consider these in turn, then discuss
the broader ecological implications of the work.

Long-term dynamics and trends in birth rates

For such a simple formulation, the TSIR model does
remarkably well. Based on a 2-wk-ahead fit, it postdicts
the essential epidemic dynamics over 20 yr, both qual-
itatively and quantitatively. Both deterministic and sto-
chastic simulations closely match the well known bi-
ennial cycles of measles in the UK (and many other
developed countries) during the 1950s and 1960s (Fine
and Clarkson 1982, Anderson et al. 1984, Black 1984,
Schenzle 1984, Anderson and May 1991, Cliff et al.
1993, Bolker and Grenfell 1995, Grenfell and Harwood
1997). The basic major epidemic dynamics (a ‘‘natural
enemy’’ interaction between susceptible and infected
hosts, forced by seasonality), can also be captured by
the model’s cousin, the SEIR equations (Schenzle 1984,
Bolker and Grenfell 1993, Earn et al. 2000). The SEIR
model shows extreme effects of nonlinearity at high
seasonal forcing—period-doubling bifurcations to ir-
regular chaotic epidemics at high seasonal amplitude
(Aron and Schwartz 1984, Schaffer and Kot 1985, Ol-
sen et al. 1988, Earn et al. 2000). Again, the TSIR
echoes these properties of the continuous-time model,
with a transition to chaos at high levels of seasonality
(Fig. 3).

The TSIR model provides a more natural way than
the SEIR to estimate the pattern of seasonality that
forces the observed epidemic dynamics. It also auto-
matically allows for changes in birth rate, which gen-
erates the observed reverse bifurcation from annual to
biennial dynamics at high birth rates (Earn et al. 2000).
The clearest illustration of this effect is provided by
the strongly annual dynamics for Liverpool (Figs. 2,
4, and 5). Note that this distinctive behavior is pre-
dicted to be a result of the greater birth rate in Liv-
erpool—the seasonality and mixing parameters for this
city are not different from those in the rest of the 60-
town data set (Bjørnstad et al. 2002; see also Finken-
städt et al. 1998). An important area for future work
will be to refine the model to capture more accurately
the extent and timing of bifurcations in response to
birth rate in centers other than London.

A general population dynamic message from our
study is that understanding the period of this forced
oscillator depends on a proper quantification of both
fast (seasonal transmission) and slow (birth rate)
changes in the parameters. Predicting the observed
nonstationarity in cycle period thus depends in turn on
(1) knowing and being able to measure the key ‘‘slow’’
variable and (2) having a sufficiently mechanistic un-

derstanding of the system. A depressing corollary is
that it may be difficult to understand such long-term
changes in systems without the unusual level of knowl-
edge available for measles. On a brighter note, the re-
cent development of semi-mechanistic modeling ap-
proaches may provide a way forward here (Ellner et
al. 1998). It will be interesting to explore whether these
methods can capture local spatial dynamics and other
variables not currently included in the TSIR model.
For example, the fact that the stochastic spectral en-
velopes in Fig. 4 fail to exactly contain the observed
spectra may be due to biases that arise from omitting
other biological processes.

Scaling of dynamics and noise

The measles data allow us to investigate, in a unique-
ly detailed way, the scaling with population size in the
relative importance of density-dependent deterministic
forces and demographic stochasticity. At first sight,
demographic noise is relatively unimportant for mea-
sles epidemics in large and medium-sized cities. How-
ever, even though the CV of demographic noise is rel-
atively low, it has the potential to drive nontrivial fluc-
tuations around the epidemic cycle (Figs. 1, 2). A dra-
matic manifestation of this is the potential for noise to
push the epidemics from the odd- to the even-year at-
tractor (Fig. 2). This theoretical possibility manifested
itself in Norwich (and environs), which exhibited even-
year epidemics from 1946 to 1960. Another important
effect of stochasticity is well known from theoretical
epidemiology—stochastic forcing can excite biennial
cycles or even complex dynamics in large and deter-
ministically stable systems (Bartlett 1956, Rand and
Wilson 1991). We do not see such effects in the measles
data analyzed here, because the strong seasonal forcing
drives the system onto a very stable biennial attractor.
Note, as a contrast, that whooping cough (another es-
sentially SEIR infection with slightly different param-
eters) shows a strong response to demographic noise
even in large cities (Rohani et al. 1999), as probably
does measles in the vaccine era (Earn et al. 2000). It
would, hence, be wrong to conclude that demographic
stochasticity is trivially unimportant whenever cities
are large. Rather it is because prevaccination measles
in large cities in England and Wales was governed by
an extremely tightly regulated attractor.

Intriguingly, epidemics in large centers appear rel-
atively unaffected by the stochastic perturbations as-
sociated with epidemiological coupling to surrounding
regions. This reflects how immigration of infection has
a negligible effect on the epidemic trajectory as soon
as there are more than a handful of resident infecteds
in the troughs between epidemics. In the companion
paper (Bjørnstad et al. 2002), we show that the influ-
ence of an immigrant is ,1% as soon as the resident
population of infecteds is .20 individuals. By contrast,
the epidemic clockwork in small towns is sensitive both
to demographic stochasticity and to the stochastic rate
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of influx of infections during fadeout periods. However,
once a major epidemic has started, the resulting out-
break is relatively insensitive to stochastic forces even
in small cities (see also Bjørnstad et al. 2002). Under-
standing this ‘‘forest fire’’-like effect via multivariate
spatial extensions of the TSIR model is a major area
for future developments.

The long-term dynamics of the TSIR model generate
a range of behaviors, from regular cycles in large cen-
ters, via regular epidemics with intervening fadeouts
in smaller towns below the CCS, to irregular epidemics
with long periods of fadeout in small towns. This gives
flesh to Barlett’s seminal categorization of type I, II,
and III dynamics and the corresponding increase in
total fadeouts with decreasing population size. Note,
however, that the general pattern of fluctuations is pre-
dictable across community sizes, though the exact tim-
ing and extent of individual outbreaks is not easy to
predict in small host communities where both birth–
death and extinction–recolonization stochasticities are
dominant. The qualitative predictability of measles dy-
namics even in small populations echoes the result of
the previous paper, that the mean proportion of sus-
ceptible ‘‘prey’’ in the population is a tightly regulated
proportion of the total population size (Bjørnstad et al.
2002). Whether this applies in very small isolated pop-
ulations (Rhodes and Anderson 1996) is an interesting
question for future work. In terms of total fadeouts, we
accurately predict the CCS, however, the model some-
what overestimates the length of the fadeouts following
local extinction (Fig. 6c). The reason for this diver-
gence is likely to be associated with our assumption
that the spatial flux of infection follows a time-invariant
Poisson process. In true life, the influx rate is likely to
be an, essentially biennially, time-varying process re-
flecting the aggregate dynamics across the country.
This will result in pulsed influx rates that reduce the
likelihood of long fadeouts. For example, Keeling and
Grenfell (1997) use a version of the SEIR model with
biennial imports and a constant infectious period to
generate realistic fadeout lengths. We are currently ex-
ploring an analogous extension of the TSIR model.

Predictability

In a cogent discussion of epidemic predictability,
Cliff (1995) reviews the difficulties of constructing
mechanistic or empirical statistical models which pre-
dict both the the timing and amplitude of recurrent
epidemics. Our results show that the TSIR model has
the potential to capture both these characteristics. Over-
all, the model generates accurate qualitative and (gen-
erally) quantitative long-term postdictions of observed
prevaccination dynamics of measles in England and
Wales. The comparison between model and data is
based on a one-step-ahead fit and is therefore not truly
out of sample. However, we believe this to be a minor
issue, since a model fitted to the latter half of the time
series successfully captures the bifurcation to biennial

cycles in the first half (not shown). Analyses based on
SEIR-like models can also predict qualitative dynam-
ical transitions, driven by birth rate, for data from US
cities (Earn et al. 2000). Between-country comparisons
of predictability, based on the TSIR model, will be an
interesting area for future work, especially as patterns
of seasonality in schooling vary between nations.

To understand why large-city measles represents
such a predictable system, we examined local Lyapu-
nov exponents across the dynamic attractor. They doc-
ument a complex interaction between the degree of
nonlinearity (as modulated by the strength of seasonal
forcing) and noise (controlled mainly by the local abun-
dance of infectives, which in turn are proportional to
population size). The most dramatic result is how the
stability of the biennial cycle arises from strongly neg-
ative LLEs at the end of each major epidemics (Fig.
7). This arises from the powerful contraction in state
space caused by the abrupt decline in infectives at the
end of the epidemic (Ellner et al. 1998). This ‘‘shrink-
age’’ results from an abrupt fall in infection rates during
the long summer school vacation. The period of max-
imum dissipation is followed by a period of local ex-
pansion and high demographic stochasticity at the nadir
of the trough. Intriguingly, the period of strong shrink-
age superdominates all other parts of the attractor in
the large cities.

We extended the analyses of LLEs to small town
dynamics and also to the chaotic trajectories that are
induced by high levels of seasonality. In both of these
cases, the picture is more complex (Fig. 8). However,
they both appear to share a common feature with the
biennial epidemic: there is contraction in phase space
at the period of faster-than-exponential decline in in-
cidence, towards the end of epidemics. The determin-
istic chaotic attractor (Fig. 8a) exhibits some additional
regions of negative exponents. The TSIR model should
allow us in future work to explore how these depend
on susceptible and infective densities.

Preliminary analyses (Fig. 8a) suggest that the LLEs
of small places do not differ much in magnitude from
those of large cities. The qualitative difference in dy-
namics appears to arise from the increase in stochastic
forcing. The large negative exponents at the end of
outbreaks suggest local contraction in phase-space that
should reduce short-term uncertainty. However, this is
a mirage in terms of true predictions, since local ex-
tinction of the infection converts the epidemic process
into a highly stochastic waiting-time process, during
which susceptibles build up until the next ‘‘spark’’ of
infection. Essentially, therefore, the transition from the
epidemic phase to the fadeout phase, corresponds to a
shift from a regime where relatively low-dimensional
forces are operating to one of more high-dimensional
stochastic variation.

On the conceptual side, we feel it appropriate to
acknowledge the very interesting recent literature on
the meaning of chaos and its hallmark, sensitivity to
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FIG. 8. (A) Local Lyapunov exponents across the stochastic attractor predicted for median birth rates in the smallest city
(Teignmouth, 10 000; cf. Fig. 2). Periods of disease extinction have been omitted. Filled circles represent positive values;
open circles represent negative vales. The area of the circle is proportional to the absolute value of the LLEs. The mean
LLE across the epidemic (nonextinct) part of the attractor is 20.35 (range: 22.94–1.08). (B) LLEs across a chaotic and
deterministic attractor (assuming 0.40 in seasonal variation; cf. Fig. 3). The dominant (global) LE is 0.08 (range in LLE:
21.34–1.05). (C) The one-step-ahead coefficient of variation in the nonlinear birth–death process across the attractor depicted
in (A). The area of the circle is proportional to the CV. The median CV is 44.73% (range: 7.0–100.0%). (D) The one-step-
ahead CV across the chaotic attractor, as depicted in (B). The median CV is 8.2% (range: 0.9–166.6%).

initial conditions, in stochastic systems (Bailey et al.
1997, Tong 1997). A major issue arises because the
‘‘attractor,’’ across which we assess mean expansion or
contraction, is less clearly defined in stochastic systems
(partly because it depends critically on the exact mag-
nitude of the noise). Our study of measles adds to the
ecological side of this discussion, by highlighting how
‘‘attractor evolution’’ is a dominant feature of this, oth-
erwise extremely stable, system. It is difficult to en-
visage how to come up with a meaningful measure of
mean ‘‘global’’ expansion/contraction in the face of
such nonstationarity. Fortunately, the advent of local
Lyapunov exponents circumvents this problem because
they are uniquely defined across phase space and
straightforward to interpret across different noise levels
and even ‘‘slow’’ nonstationarity.

The TSIR model successfully predicts the transition
in measles dynamics associated with changes in human
birth rates (Figs. 1 and 2). It therefore holds promise
as a potential predictive tool in epidemiology, both for
childhood infections, such as measles and whooping
cough, and perhaps also for infections with more com-
plicated strain structure. An important future test bed
for its predictive ability is the dynamics during the

more recent vaccination era. Fig. 9 gives a preliminary
illustration of this, showing an out-of-sample predic-
tion of the dynamics of measles in London into the
vaccine era, based on the fit to the prevaccination time
series. Overall, the results show promise, capturing the
observed decline in amplitude and the shift away from
biennial cycles. However, the TSIR model (especially
the deterministic realization) is less good at capturing
the irregular and changing period of cylicity into the
vaccine era. The variable period probably arises partly
from the interaction of noise interacting with increased
dynamical complexity caused by vaccination (Earn et
al. 2000), combined with variations in epidemiological
coupling caused by decorrelation of epidemics (Bolker
and Grenfell 1996). Preliminary work (K. Glass and
B. Grenfell, unpublished manuscript) indicates that we
can better capture the interaction of complex dynamics
and noise by expressing the transmission exponent, a,
as a decreasing function of the recruitment rate of sus-
ceptibles, as determined by birth and vaccination rates.
We shall also explore the much more irregular prevac-
cination dynamics of measles seen in some U.S. cities,
where preliminary studies indicate a key role for pro-
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FIG. 9. Use of the TSIR model to predict changes in dynamics into the vaccination era. The model is fitted to the
prevaccination time series (1944–1965) and forecasted into the vaccination era by discounting birth rates by the rates of
vaccination uptake (Rohani et al. 1999, Earn et al. 2000). Red lines and circles represent observed incidence. The black line
is the deterministic forecast.

cess noise and complex dynamics, even in large pop-
ulations.

Implications for ecological time series analysis

A recent burst of research on ecological time series
(Bjørnstad and Grenfell 2001) has emphasized the im-
portance of understanding mechanistically (1) the di-
mensionality of ecological interactions (Bjørnstad et
al. 2001), (2) the balance between density-dependent
nonlinearity, process noise, and measurement error
(Ellner et al. 1998, Grenfell et al. 1998, Bjørnstad et
al. 1999, Meyer and Millar 1999, Millar and Meyer
2000, de Valpine and Hastings 2001), and (3) the im-
portance of spatiotemporal dynamics and coupling
(Amarasekare 1998, Swinton 1998, Blasius et al. 1999,
Thomas and Kunin 1999). Recent studies also highlight
the importance of including seasonality in order to un-
derstand ecological dynamics (Leirs et al. 1997, Schef-
fer et al. 1997, Hansen et al. 1999, King and Schaffer
2001).

Here, we have illustrated that a mechanistic analysis
of measles time series allow us to address the meth-
odology and dynamical implications of all these issues.

1) Dimensionality. We have shown that the simple,
low-dimensional, TSIR model can capture the long-
term dynamical behavior of measles in large cities re-
markably accurately. A key reason for this is that the
underlying dynamics are effectively a (seasonally
forced) two-dimensional interaction between suscep-
tible and infectious individuals. Several previous stud-
ies on measles dynamics stressed how age structure is
an important component of the transmission dynamics.
This would logically imply a much higher dimension-
ality to the system. However, Earn et al. (2000) show
that the high-dimensional age structure of this system
can be collapsed onto (a slightly altered) seasonal cycle
of transmission. Low-dimensional models have pre-

viously been fitted with great success to a variety of
data on insect population dynamics (Gurney et al. 1980,
Costantino et al. 1997, Dennis et al. 1997). However,
these are typically time series from microcosm exper-
iments. One might therefore wonder whether the ap-
parent low dimensionality of the dynamics is an artifact
of the laboratory environment. Our study sheds light
on this question, showing that even a ‘‘free-ranging’’
natural enemy–host system has the potential to adhere
to low-dimensional laws. Of course, most ecological
interactions are more complex than that between mea-
sles and the relatively constant human host populations
in developed countries. Recent developments in non-
linear time series methods offer a way to estimate the
dimensionality for more complex interactions, and to
reconstruct unobserved variables indirectly (Ellner et
al. 1998, Bjørnstad et al. 2001, Wood 2001). These
methods may prove useful for more complicated free-
ranging systems.

2) Scaling noise and nonlinearity. The model can
capture the scaling of demographic noise and deter-
minism over three orders of magnitude of population
size in this highly nonlinear, nonstationary ecological
system. We find that large cities exhibit predictable and
highly regulated cycles that are little affected by de-
mographic stochasticity and spatial coupling. Small ur-
ban areas, in contrast, exhibit recurrent outbreaks for
which a dominant factor is the interepidemic period,
as determined by the stochastic import rate. Interest-
ingly, if one were to ignore the scaling of demographic
and extinction–recolonization stochasticity and just fo-
cus on the dynamic properties of the skeleton, the
smallest populations (e.g., Teignmouth; Fig. 8). would
be judged to be the more stable and predictable (both
the global and local Lyapunov exponents are more neg-
ative compared to, say, London). This, of course, is
just a detailed illustration of how it is the combined
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magnitude of the regulatory and the disruptive forces
that is the crucial feature in ecological systems. For
measles, the transition from predictable cycles to re-
current outbreaks is—because of it association with a
transition in importance of extinction–recolonization
dynamics—associated with a shift from local regula-
tion to spatial coupling and metapopulation regulation.

3) Spatial coupling and spatiotemporal dynamics.
The shift from local regulation to spatial coupling and
metapopulation regulation of smaller population, stress
how the regional dynamics of this host–enemy system
can only be fully understood as a core–satellite me-
tapopulation (Grenfell and Harwood 1997, Grenfell et
al. 2001). Intriguingly, these results parallel the recent
emphasis of unstable local dynamics and metapopu-
lation regulation in parasitoid–host systems (Hassell et
al. 1991, Murdoch and Briggs 1996, Wilson and Hassell
1997, Amarasekare 1998, 2000). For measles, cyclic
lows (epidemic troughs) are the main focus of epide-
miologically significant transfer of infection between
populations. Strength of coupling, therefore, depends
critically on the timing of the sparks of infection from
larger centers as well as the overall size of the recipient
population. The strength of spatial coupling of this
core–satellite metapopulation, therefore, depend not
only on movement rates, but also on local dynamics
and local host population size. For human infections,
understanding this coupling—although more compli-
cated than one might initially think—may turn out to
be a relatively tractable exercise, because the relatively
clumped spatial population structure of the host is well
known.

It will be interesting to see whether the persistence
and regulation of other host–natural enemy or preda-
tor–prey systems follow the sort of core–satellite me-
tapopulation dynamics we see in measles.
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