Coverage for tests/fgcmcalTestBase.py : 8%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
# See COPYRIGHT file at the top of the source tree. # # This file is part of fgcmcal. # # Developed for the LSST Data Management System. # This product includes software developed by the LSST Project # (https://www.lsst.org). # See the COPYRIGHT file at the top-level directory of this distribution # for details of code ownership. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>.
This class is used as the basis for individual obs package tests using data from testdata_jointcal. """
""" Base class for fgcmcal tests, to genericize some test running and setup.
Derive from this first, then from TestCase. """
""" Call from your child class's setUp() to get variables built.
Parameters ---------- inputDir: `str`, optional Input directory testDir: `str`, optional Test directory logLevel: `str`, optional Override loglevel for command-line tasks otherArgs: `list`, default=[] List of additional arguments to send to command-line tasks """
self.inputDir = inputDir self.testDir = testDir self.logLevel = logLevel self.otherArgs = otherArgs
self.config = None self.configfiles = []
lsst.log.setLevel("daf.persistence.butler", lsst.log.FATAL) lsst.log.setLevel("CameraMapper", lsst.log.FATAL)
if self.logLevel is not None: self.otherArgs.extend(['--loglevel', 'fgcmcal=%s'%self.logLevel])
""" Test running of FgcmMakeLutTask
Parameters ---------- nBand: `int` Number of bands tested i0Std: `np.array', size nBand Values of i0Std to compare to i10Std: `np.array`, size nBand Values of i10Std to compare to i0Recon: `np.array`, size nBand Values of reconstructed i0 to compare to i10Recon: `np.array`, size nBand Values of reconsntructed i10 to compare to """
args = [self.inputDir, '--output', self.testDir, '--doraise'] if len(self.configfiles) > 0: args.extend(['--configfile', *self.configfiles]) args.extend(self.otherArgs)
result = fgcmcal.FgcmMakeLutTask.parseAndRun(args=args, config=self.config) self._checkResult(result)
butler = dafPersist.butler.Butler(self.testDir) tempTask = fgcmcal.FgcmFitCycleTask() lutCat = butler.get('fgcmLookUpTable') fgcmLut, lutIndexVals, lutStd = fgcmcal.utilities.translateFgcmLut(lutCat, dict(tempTask.config.filterMap))
# Check that we got the requested number of bands... self.assertEqual(nBand, len(lutIndexVals[0]['FILTERNAMES']))
self.assertFloatsAlmostEqual(i0Std, lutStd[0]['I0STD'], msg='I0Std', rtol=1e-5) self.assertFloatsAlmostEqual(i10Std, lutStd[0]['I10STD'], msg='I10Std', rtol=1e-5)
indices = fgcmLut.getIndices(np.arange(nBand, dtype=np.int32), np.zeros(nBand) + np.log(lutStd[0]['PWVSTD']), np.zeros(nBand) + lutStd[0]['O3STD'], np.zeros(nBand) + np.log(lutStd[0]['TAUSTD']), np.zeros(nBand) + lutStd[0]['ALPHASTD'], np.zeros(nBand) + 1./np.cos(np.radians(lutStd[0]['ZENITHSTD'])), np.zeros(nBand, dtype=np.int32), np.zeros(nBand) + lutStd[0]['PMBSTD']) i0 = fgcmLut.computeI0(np.zeros(nBand) + np.log(lutStd[0]['PWVSTD']), np.zeros(nBand) + lutStd[0]['O3STD'], np.zeros(nBand) + np.log(lutStd[0]['TAUSTD']), np.zeros(nBand) + lutStd[0]['ALPHASTD'], np.zeros(nBand) + 1./np.cos(np.radians(lutStd[0]['ZENITHSTD'])), np.zeros(nBand) + lutStd[0]['PMBSTD'], indices)
self.assertFloatsAlmostEqual(i0Recon, i0, msg='i0Recon', rtol=1e-5)
i1 = fgcmLut.computeI1(np.zeros(nBand) + np.log(lutStd[0]['PWVSTD']), np.zeros(nBand) + lutStd[0]['O3STD'], np.zeros(nBand) + np.log(lutStd[0]['TAUSTD']), np.zeros(nBand) + lutStd[0]['ALPHASTD'], np.zeros(nBand) + 1./np.cos(np.radians(lutStd[0]['ZENITHSTD'])), np.zeros(nBand) + lutStd[0]['PMBSTD'], indices)
self.assertFloatsAlmostEqual(i10Recon, i1/i0, msg='i10Recon', rtol=1e-5)
""" Test running of FgcmBuildStarsTableTask
Parameters ---------- visits: `list` List of visits to calibrate nStar: `int` Number of stars expected nObs: `int` Number of observations of stars expected """
args = [self.inputDir, '--output', self.testDir, '--id', 'visit='+'^'.join([str(visit) for visit in visits]), '--doraise'] if len(self.configfiles) > 0: args.extend(['--configfile', *self.configfiles]) args.extend(self.otherArgs)
result = fgcmcal.FgcmBuildStarsTableTask.parseAndRun(args=args, config=self.config) self._checkResult(result)
butler = dafPersist.butler.Butler(self.testDir)
visitCat = butler.get('fgcmVisitCatalog') self.assertEqual(len(visits), len(visitCat))
starIds = butler.get('fgcmStarIds') self.assertEqual(nStar, len(starIds))
starObs = butler.get('fgcmStarObservations') self.assertEqual(nObs, len(starObs))
""" Test running of FgcmBuildStarsTask and compare to Table run
Parameters ---------- visits: `list` List of visits to calibrate """ args = [self.testDir, '--output', os.path.join(self.testDir, 'rerun', 'src'), '--id', 'visit='+'^'.join([str(visit) for visit in visits]), '--doraise'] if len(self.configfiles) > 0: args.extend(['--configfile', *self.configfiles]) args.extend(self.otherArgs)
result = fgcmcal.FgcmBuildStarsTask.parseAndRun(args=args, config=self.config) self._checkResult(result)
butlerSrc = dafPersist.Butler(os.path.join(self.testDir, 'rerun', 'src')) butlerTable = dafPersist.Butler(os.path.join(self.testDir))
# We compare the two catalogs to ensure they contain the same data. They will # not be identical in ordering because the input data was ingested in a different # order (hence the stars are rearranged). self._compareBuildStars(butlerSrc, butlerTable)
""" Test running of FgcmFitCycleTask
Parameters ---------- nZp: `int` Number of zeropoints created by the task nGoodZp: `int` Number of good (photometric) zeropoints created nOkZp: `int` Number of constrained zeropoints (photometric or not) nBadZp: `int` Number of unconstrained (bad) zeropoints nStdStars: `int` Number of standard stars produced nPlots: `int` Number of plots produced skipChecks: `bool`, optional Skip number checks, when running less-than-final cycle. Default is False. """
args = [self.inputDir, '--output', self.testDir, '--doraise'] if len(self.configfiles) > 0: args.extend(['--configfile', *self.configfiles]) args.extend(self.otherArgs)
# Move into the test directory so the plots will get cleaned in tearDown # In the future, with Gen3, we will probably have a better way of managing # non-data output such as plots. cwd = os.getcwd() os.chdir(self.testDir)
result = fgcmcal.FgcmFitCycleTask.parseAndRun(args=args, config=self.config) self._checkResult(result)
# Move back to the previous directory os.chdir(cwd)
if skipChecks: return
# Check that the expected number of plots are there. plots = glob.glob(os.path.join(self.testDir, self.config.outfileBase + '_cycle%02d_plots/' % (self.config.cycleNumber) + '*.png')) self.assertEqual(len(plots), nPlots)
butler = dafPersist.butler.Butler(self.testDir)
zps = butler.get('fgcmZeropoints', fgcmcycle=self.config.cycleNumber)
# Check the numbers of zeropoints in all, good, okay, and bad self.assertEqual(len(zps), nZp)
gd, = np.where(zps['fgcmFlag'] == 1) self.assertEqual(len(gd), nGoodZp)
ok, = np.where(zps['fgcmFlag'] < 16) self.assertEqual(len(ok), nOkZp)
bd, = np.where(zps['fgcmFlag'] >= 16) self.assertEqual(len(bd), nBadZp)
# Check that there are no illegal values with the ok zeropoints test, = np.where(zps['fgcmZpt'][gd] < -9000.0) self.assertEqual(len(test), 0)
stds = butler.get('fgcmStandardStars', fgcmcycle=self.config.cycleNumber)
self.assertEqual(len(stds), nStdStars)
zpOffsets, testVisit, testCcd, testFilter, testBandIndex): """ Test running of FgcmOutputProductsTask
Parameters ---------- visitDataRefName: `str` Name of column in dataRef to get the visit ccdDataRefName: `str` Name of column in dataRef to get the ccd filterMapping: `dict` Mapping of filterName to dataRef filter names zpOffsets: `np.array` Zeropoint offsets expected testVisit: `int` Visit id to check for round-trip computations testCcd: `int` Ccd id to check for round-trip computations testFilter: `str` Filtername for testVisit/testCcd testBandIndex: `int` Band index for testVisit/testCcd """
args = [self.inputDir, '--output', self.testDir, '--doraise'] if len(self.configfiles) > 0: args.extend(['--configfile', *self.configfiles]) args.extend(self.otherArgs)
result = fgcmcal.FgcmOutputProductsTask.parseAndRun(args=args, config=self.config, doReturnResults=True) self._checkResult(result)
# Extract the offsets from the results offsets = result.resultList[0].results.offsets
self.assertFloatsAlmostEqual(offsets, zpOffsets, atol=1e-6)
butler = dafPersist.butler.Butler(self.testDir)
# Test the reference catalog stars
# Read in the raw stars... rawStars = butler.get('fgcmStandardStars', fgcmcycle=self.config.cycleNumber)
# Read in the new reference catalog... config = LoadIndexedReferenceObjectsConfig() config.ref_dataset_name = 'fgcm_stars' task = LoadIndexedReferenceObjectsTask(butler, config=config)
# Read in a giant radius to get them all refStruct = task.loadSkyCircle(rawStars[0].getCoord(), 5.0*geom.degrees, filterName='r')
# Make sure all the stars are there self.assertEqual(len(rawStars), len(refStruct.refCat))
# And make sure the numbers are consistent test, = np.where(rawStars['id'][0] == refStruct.refCat['id'])
# Perform math on numpy arrays to maintain datatypes mags = rawStars['mag_std_noabs'][:, 0].astype(np.float64) + offsets[0] fluxes = (mags*units.ABmag).to_value(units.nJy) fluxErrs = (np.log(10.)/2.5)*fluxes*rawStars['magErr_std'][:, 0].astype(np.float64) # Only check the first one self.assertFloatsAlmostEqual(fluxes[0], refStruct.refCat['r_flux'][test[0]]) self.assertFloatsAlmostEqual(fluxErrs[0], refStruct.refCat['r_fluxErr'][test[0]])
# Test the psf candidate counting, ratio should be between 0.0 and 1.0 candRatio = (refStruct.refCat['r_nPsfCandidate'].astype(np.float64) / refStruct.refCat['r_nTotal'].astype(np.float64)) self.assertFloatsAlmostEqual(candRatio.min(), 0.0) self.assertFloatsAlmostEqual(candRatio.max(), 1.0)
# Test the fgcm_photoCalib output
zptCat = butler.get('fgcmZeropoints', fgcmcycle=self.config.cycleNumber) selected = (zptCat['fgcmFlag'] < 16)
# Read in all the calibrations, these should all be there # This test is simply to ensure that all the photoCalib files exist for rec in zptCat[selected]: testCal = butler.get('fgcm_photoCalib', dataId={visitDataRefName: int(rec['visit']), ccdDataRefName: int(rec['ccd']), 'filter': filterMapping[rec['filtername']]}) self.assertIsNotNone(testCal)
# We do round-trip value checking on just the final one (chosen arbitrarily) testCal = butler.get('fgcm_photoCalib', dataId={visitDataRefName: int(testVisit), ccdDataRefName: int(testCcd), 'filter': filterMapping[testFilter]}) self.assertIsNotNone(testCal)
src = butler.get('src', dataId={visitDataRefName: int(testVisit), ccdDataRefName: int(testCcd)})
# Only test sources with positive flux gdSrc = (src['slot_CalibFlux_instFlux'] > 0.0)
# We need to apply the calibration offset to the fgcmzpt (which is internal # and doesn't know about that yet) testZpInd, = np.where((zptCat['visit'] == testVisit) & (zptCat['ccd'] == testCcd)) fgcmZpt = (zptCat['fgcmZpt'][testZpInd] + offsets[testBandIndex] + zptCat['fgcmDeltaChrom'][testZpInd]) fgcmZptGrayErr = np.sqrt(zptCat['fgcmZptVar'][testZpInd])
if self.config.doComposeWcsJacobian: # The raw zeropoint needs to be modified to know about the wcs jacobian camera = butler.get('camera') approxPixelAreaFields = fgcmcal.utilities.computeApproxPixelAreaFields(camera) center = approxPixelAreaFields[testCcd].getBBox().getCenter() pixAreaCorr = approxPixelAreaFields[testCcd].evaluate(center) fgcmZpt += -2.5*np.log10(pixAreaCorr)
# This is the magnitude through the mean calibration photoCalMeanCalMags = np.zeros(gdSrc.sum()) # This is the magnitude through the full focal-plane variable mags photoCalMags = np.zeros_like(photoCalMeanCalMags) # This is the magnitude with the FGCM (central-ccd) zeropoint zptMeanCalMags = np.zeros_like(photoCalMeanCalMags)
for i, rec in enumerate(src[gdSrc]): photoCalMeanCalMags[i] = testCal.instFluxToMagnitude(rec['slot_CalibFlux_instFlux']) photoCalMags[i] = testCal.instFluxToMagnitude(rec['slot_CalibFlux_instFlux'], rec.getCentroid()) zptMeanCalMags[i] = fgcmZpt - 2.5*np.log10(rec['slot_CalibFlux_instFlux'])
# These should be very close but some tiny differences because the fgcm value # is defined at the center of the bbox, and the photoCal is the mean over the box self.assertFloatsAlmostEqual(photoCalMeanCalMags, zptMeanCalMags, rtol=1e-6) # These should be roughly equal, but not precisely because of the focal-plane # variation. However, this is a useful sanity check for something going totally # wrong. self.assertFloatsAlmostEqual(photoCalMeanCalMags, photoCalMags, rtol=1e-2)
# The next test compares the "FGCM standard magnitudes" (which are output # from the fgcm code itself) to the "calibrated magnitudes" that are # obtained from running photoCalib.calibrateCatalog() on the original # src catalogs. This summary comparison ensures that using photoCalibs # yields the same results as what FGCM is computing internally. # Note that we additionally need to take into account the post-processing # offsets used in the tests.
# For decent statistics, we are matching all the sources from one visit # (multiple ccds)
subset = butler.subset('src', dataId={visitDataRefName: int(testVisit)})
matchMag, matchDelta = self._getMatchedVisitCat(rawStars, subset, testBandIndex, offsets)
st = np.argsort(matchMag) # Compare the brightest 25% of stars. No matter the setting of # deltaMagBkgOffsetPercentile, we want to ensure that these stars # match on average. brightest, = np.where(matchMag < matchMag[st[int(0.25*st.size)]]) self.assertFloatsAlmostEqual(np.median(matchDelta[brightest]), 0.0, atol=0.002)
# And the photoCal error is just the zeropoint gray error self.assertFloatsAlmostEqual(testCal.getCalibrationErr(), (np.log(10.0)/2.5)*testCal.getCalibrationMean()*fgcmZptGrayErr)
# Test the transmission output
visitCatalog = butler.get('fgcmVisitCatalog') lutCat = butler.get('fgcmLookUpTable')
testTrans = butler.get('transmission_atmosphere_fgcm', dataId={visitDataRefName: visitCatalog[0]['visit']}) testResp = testTrans.sampleAt(position=geom.Point2D(0, 0), wavelengths=lutCat[0]['atmLambda'])
# The test fit is performed with the atmosphere parameters frozen # (freezeStdAtmosphere = True). Thus the only difference between # these output atmospheres and the standard is the different # airmass. Furthermore, this is a very rough comparison because # the look-up table is computed with very coarse sampling for faster # testing.
# To account for overall throughput changes, we scale by the median ratio, # we only care about the shape ratio = np.median(testResp/lutCat[0]['atmStdTrans']) self.assertFloatsAlmostEqual(testResp/ratio, lutCat[0]['atmStdTrans'], atol=0.04)
# The second should be close to the first, but there is the airmass # difference so they aren't identical. testTrans2 = butler.get('transmission_atmosphere_fgcm', dataId={visitDataRefName: visitCatalog[1]['visit']}) testResp2 = testTrans2.sampleAt(position=geom.Point2D(0, 0), wavelengths=lutCat[0]['atmLambda'])
# As above, we scale by the ratio to compare the shape of the curve. ratio = np.median(testResp/testResp2) self.assertFloatsAlmostEqual(testResp/ratio, testResp2, atol=0.04)
rawRepeatability, filterNCalibMap): """ Test running of FgcmCalibrateTractTask
Parameters ---------- visits: `list` List of visits to calibrate tract: `int` Tract number rawRepeatability: `np.array` Expected raw repeatability after convergence. Length should be number of bands. filterNCalibMap: `dict` Mapping from filter name to number of photoCalibs created. """
args = [self.inputDir, '--output', self.testDir, '--id', 'visit='+'^'.join([str(visit) for visit in visits]), 'tract=%d' % (tract), '--doraise'] if len(self.configfiles) > 0: args.extend(['--configfile', *self.configfiles]) args.extend(self.otherArgs)
# Move into the test directory so the plots will get cleaned in tearDown # In the future, with Gen3, we will probably have a better way of managing # non-data output such as plots. cwd = os.getcwd() os.chdir(self.testDir)
result = fgcmcal.FgcmCalibrateTractTableTask.parseAndRun(args=args, config=self.config, doReturnResults=True) self._checkResult(result)
# Move back to the previous directory os.chdir(cwd)
# Check that the converged repeatability is what we expect repeatability = result.resultList[0].results.repeatability self.assertFloatsAlmostEqual(repeatability, rawRepeatability, atol=4e-6)
butler = dafPersist.butler.Butler(self.testDir)
# Check that the number of photoCalib objects in each filter are what we expect for filterName in filterNCalibMap.keys(): subset = butler.subset('fgcm_tract_photoCalib', tract=tract, filter=filterName) tot = 0 for dataRef in subset: if butler.datasetExists('fgcm_tract_photoCalib', dataId=dataRef.dataId): tot += 1 self.assertEqual(tot, filterNCalibMap[filterName])
# Check that every visit got a transmission visits = butler.queryMetadata('fgcm_tract_photoCalib', ('visit'), tract=tract) for visit in visits: self.assertTrue(butler.datasetExists('transmission_atmosphere_fgcm_tract', tract=tract, visit=visit))
# Check that we got the reference catalog output. # This will raise an exception if the catalog is not there. config = LoadIndexedReferenceObjectsConfig() config.ref_dataset_name = 'fgcm_stars_%d' % (tract) task = LoadIndexedReferenceObjectsTask(butler, config=config)
coord = geom.SpherePoint(337.656174*geom.degrees, 0.823595*geom.degrees)
refStruct = task.loadSkyCircle(coord, 5.0*geom.degrees, filterName='r')
# Test the psf candidate counting, ratio should be between 0.0 and 1.0 candRatio = (refStruct.refCat['r_nPsfCandidate'].astype(np.float64) / refStruct.refCat['r_nTotal'].astype(np.float64)) self.assertFloatsAlmostEqual(candRatio.min(), 0.0) self.assertFloatsAlmostEqual(candRatio.max(), 1.0)
# Test that temporary files aren't stored self.assertFalse(butler.datasetExists('fgcmVisitCatalog')) self.assertFalse(butler.datasetExists('fgcmStarObservations')) self.assertFalse(butler.datasetExists('fgcmStarIndices')) self.assertFalse(butler.datasetExists('fgcmReferenceStars'))
""" Compare the full set of BuildStars outputs with files from two repos.
Parameters ---------- butler1, butler2 : `lsst.daf.persistence.Butler` """ # Check the visit catalogs are identical visitCat1 = butler1.get('fgcmVisitCatalog').asAstropy() visitCat2 = butler2.get('fgcmVisitCatalog').asAstropy()
for col in visitCat1.columns: if isinstance(visitCat1[col][0], str): testing.assert_array_equal(visitCat1[col], visitCat2[col]) else: testing.assert_array_almost_equal(visitCat1[col], visitCat2[col])
# Check that the observation catalogs have the same length # Detailed comparisons of the contents are below. starObs1 = butler1.get('fgcmStarObservations') starObs2 = butler2.get('fgcmStarObservations') self.assertEqual(len(starObs1), len(starObs2))
# Check that the number of stars is the same and all match. starIds1 = butler1.get('fgcmStarIds') starIds2 = butler2.get('fgcmStarIds') self.assertEqual(len(starIds1), len(starIds2)) matcher = esutil.htm.Matcher(11, starIds1['ra'], starIds1['dec']) matches = matcher.match(starIds2['ra'], starIds2['dec'], 1./3600., maxmatch=1) self.assertEqual(len(matches[0]), len(starIds1))
# Check that the number of observations of each star is the same. testing.assert_array_equal(starIds1['nObs'][matches[1]], starIds2['nObs'][matches[0]])
# And to test the contents, we need to unravel the observations and make # sure that they are matched individually, because the two catalogs # are constructed in a different order. starIndices1 = butler1.get('fgcmStarIndices') starIndices2 = butler2.get('fgcmStarIndices')
test1 = np.zeros(len(starIndices1), dtype=[('ra', 'f8'), ('dec', 'f8'), ('x', 'f8'), ('y', 'f8'), ('psf_candidate', 'b1'), ('visit', 'i4'), ('ccd', 'i4'), ('instMag', 'f4'), ('instMagErr', 'f4'), ('jacobian', 'f4')]) test2 = np.zeros_like(test1)
# Fill the test1 numpy recarray with sorted and unpacked data from starObs1. # Note that each star has a different number of observations, leading to # a "ragged" array that is packed in here. counter = 0 obsIndex = starIndices1['obsIndex'] for i in range(len(starIds1)): ind = starIds1['obsArrIndex'][matches[1][i]] nObs = starIds1['nObs'][matches[1][i]] for name in test1.dtype.names: test1[name][counter: counter + nObs] = starObs1[name][obsIndex][ind: ind + nObs] counter += nObs
# Fill the test2 numpy recarray with sorted and unpacked data from starObs2. # Note that we have to match these observations per star by matching "visit" # (implicitly assuming each star is observed only once per visit) to ensure # that the observations in test2 are in the same order as test1. counter = 0 obsIndex = starIndices2['obsIndex'] for i in range(len(starIds2)): ind = starIds2['obsArrIndex'][matches[0][i]] nObs = starIds2['nObs'][matches[0][i]] a, b = esutil.numpy_util.match(test1['visit'][counter: counter + nObs], starObs2['visit'][obsIndex][ind: ind + nObs]) for name in test2.dtype.names: test2[name][counter: counter + nObs][a] = starObs2[name][obsIndex][ind: ind + nObs][b] counter += nObs
for name in test1.dtype.names: testing.assert_array_almost_equal(test1[name], test2[name])
""" Get a list of matched magnitudes and deltas from calibrated src catalogs.
Parameters ---------- rawStars : `lsst.afw.table.SourceCatalog` Fgcm standard stars dataRefs : `list` or `lsst.daf.persist.ButlerSubset` Data references for source catalogs to match bandIndex : `int` Index of the band for the source catalogs offsets : `np.ndarray` Testing calibration offsets to apply to rawStars
Returns ------- matchMag : `np.ndarray` Array of matched magnitudes matchDelta : `np.ndarray` Array of matched deltas between src and standard stars. """ matcher = esutil.htm.Matcher(11, np.rad2deg(rawStars['coord_ra']), np.rad2deg(rawStars['coord_dec']))
matchDelta = None for dataRef in dataRefs: src = dataRef.get() photoCal = dataRef.get('fgcm_photoCalib') src = photoCal.calibrateCatalog(src)
gdSrc, = np.where(np.nan_to_num(src['slot_CalibFlux_flux']) > 0.0)
matches = matcher.match(np.rad2deg(src['coord_ra'][gdSrc]), np.rad2deg(src['coord_dec'][gdSrc]), 1./3600., maxmatch=1)
srcMag = src['slot_CalibFlux_mag'][gdSrc][matches[0]] # Apply offset here to the catalog mag catMag = rawStars['mag_std_noabs'][matches[1]][:, bandIndex] + offsets[bandIndex] delta = srcMag - catMag if matchDelta is None: matchDelta = delta matchMag = catMag else: matchDelta = np.append(matchDelta, delta) matchMag = np.append(matchMag, catMag)
return matchMag, matchDelta
""" Check the result output from the task
Parameters ---------- result: `pipeBase.struct` Result structure output from a task """
self.assertNotEqual(result.resultList, [], 'resultList should not be empty') self.assertEqual(result.resultList[0].exitStatus, 0)
""" Tear down and clear directories """
if getattr(self, 'config', None) is not None: del self.config if os.path.exists(self.testDir): shutil.rmtree(self.testDir, True) |